留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于路面垂向激励博弈决策的悬架模型切换预瞄控制研究

吴骁 陈志勇 陈龙 刘巧斌 杨红波 史文库

吴骁, 陈志勇, 陈龙, 刘巧斌, 杨红波, 史文库. 基于路面垂向激励博弈决策的悬架模型切换预瞄控制研究[J]. 交通运输工程学报, 2025, 25(3): 269-283. doi: 10.19818/j.cnki.1671-1637.2025.03.018
引用本文: 吴骁, 陈志勇, 陈龙, 刘巧斌, 杨红波, 史文库. 基于路面垂向激励博弈决策的悬架模型切换预瞄控制研究[J]. 交通运输工程学报, 2025, 25(3): 269-283. doi: 10.19818/j.cnki.1671-1637.2025.03.018
WU Xiao, CHEN Zhi-yong, CHEN Long, LIU Qiao-bin, YANG Hong-bo, SHI Wen-ku. Research on suspension model switching preview control based on road surface vertical excitation game decision[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 269-283. doi: 10.19818/j.cnki.1671-1637.2025.03.018
Citation: WU Xiao, CHEN Zhi-yong, CHEN Long, LIU Qiao-bin, YANG Hong-bo, SHI Wen-ku. Research on suspension model switching preview control based on road surface vertical excitation game decision[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 269-283. doi: 10.19818/j.cnki.1671-1637.2025.03.018

基于路面垂向激励博弈决策的悬架模型切换预瞄控制研究

doi: 10.19818/j.cnki.1671-1637.2025.03.018
基金项目: 

国家自然科学联合基金项目 U24A6008

中国博士后科学基金面上项目 2024M753542

汽车仿真与控制国家重点实验室开放课题 20230101

详细信息
    作者简介:

    吴骁(1998-),男,陕西西安人,吉林大学工学博士研究生,从事车辆系统动力学与控制研究

    通讯作者:

    陈志勇(1980-),男,吉林长春人,吉林大学教授,工学博士

  • 中图分类号: U463.1

Research on suspension model switching preview control based on road surface vertical excitation game decision

Funds: 

Joint Fund of National Natural Science Foundation of China U24A6008

China Postdoctoral Science Foundation Project 2024M753542

Open Project of the State Key Laboratory of Automotive Simulation and Control 20230101

More Information
Article Text (Baidu Translation)
  • 摘要: 针对表观路面不平度与实际路面垂向激励不同的情况,提出一种基于博弈论的路面垂向激励感知决策方法,用于悬架预瞄控制,提升了车辆在复杂路面激励工况下的平顺性;基于悬架最优控制理论,针对不同道路激励模式,采用多目标优化算法优化控制模型,综合所有激励模式下的控制模型,建立了悬架模型切换控制系统,根据路面垂向激励切换控制器的控制参数,使悬架的振动状态保持最优;对比了预瞄悬架在相同路面激励、不同控制器参数下的振动响应结果,分析了控制器参数对振动响应的影响;将悬架的控制视为控制器与路面激励的博弈,以提升平顺性为目标,在不同道路激励下,当道路预瞄法与状态观测法的结果相互矛盾时,基于博弈论分析出其中的最优结果,作为悬架控制模型切换的依据。研究结果表明:基于博弈论,控制系统应根据功率谱密度指数或振幅较大的路面切换控制模型以提升平顺性;相对于未采用博弈论的纯预瞄控制模型,连续路面上,当道路预瞄结果为A级,状态观测结果为D级时,基于博弈论的最优控制模型的车身加速度均方根值降低了14.24%;冲击路面上,车身加速度峰值降低了5.86%;对于混合路面,车身加速度均方根值降低了11.60%,各工况下悬架动挠度、轮胎动变形、能耗均方根值的提升均不超过10%。该方法可有效提升车辆在各种复杂路面工况下的平顺性。

     

  • 图  1  控制系统架构

    Figure  1.  Structure of control system

    图  2  四分之一车辆模型

    Figure  2.  Model of quarter car

    图  3  路面激励与车身加速度的仿真结果、多目标优化结果

    Figure  3.  Results of simulation and multi-objective optimization of road excitation and vehicle body acceleration

    图  4  冲击路面多目标优化结果

    Figure  4.  Multi-objective optimization results of impact road surface

    图  5  混合路面多目标优化结果

    Figure  5.  Multi-objective optimization results of mixed road surface

    图  6  各悬架控制器仿真结果对比

    Figure  6.  Comparison of simulation results of each suspension controller

    图  7  道路不平度对比

    Figure  7.  Comparison of road roughnesses

    图  8  连续路面激励情况1仿真结果

    Figure  8.  Simulation results of continuous road surface excitation case 1

    图  9  连续路面激励情况2仿真结果

    Figure  9.  Simulation results of continuous road surface excitation case 2

    图  10  混合路面激励情况1仿真结果

    Figure  10.  Simulation results of mixed road surface excitation case 1

    图  11  混合路面激励情况2仿真结果

    Figure  11.  Simulation results of mixed road surface excitation case 2

    图  12  悬架试验台架

    Figure  12.  Suspension experiment platform

    图  13  工况1试验结果对比

    Figure  13.  Comparison of suspension experiment results in case 1

    图  14  工况2试验结果对比

    Figure  14.  Comparison of suspension experiment results in case 2

    图  15  工况3试验结果对比

    Figure  15.  Comparison of suspension experiment results in case 3

    表  1  不同连续路面激励及控制参数下的振动结果对比

    Table  1.   Comparison of vibration results of different continuous road surface excitation and controller parameters

    振动结果 激励等级 控制模型对应的路面等级
    ISO A d=4 ISO B d=6 ISO C d=8 ISO D d=10
    车身加速度均方根值/(m·s-2) ISO A 0.287 8 0.257 0 0.245 7 0.244 6
    ISO B 0.557 1 0.517 5 0.495 3 0.471 6
    ISO C 1.096 5 1.030 9 1.016 5 1.009 3
    ISO D 2.234 8 2.026 9 1.950 5 1.943 3
    悬架动挠度均方根值/ m ISO A 0.004 4 0.004 5 0.004 5 0.004 6
    ISO B 0.013 2 0.014 4 0.015 2 0.016 6
    ISO C 0.026 9 0.027 6 0.028 9 0.030 8
    ISO D 0.060 5 0.061 3 0.061 8 0.063 3
    理论能耗均方根值/W ISO A 3.173 6 3.272 1 3.324 0 3.395 8
    ISO B 17.387 8 18.082 7 18.753 1 18.991 4
    ISO C 100.528 0 108.322 7 119.051 6 152.293 1
    ISO D 370.536 1 383.236 9 399.923 5 409.178 6
    下载: 导出CSV

    表  2  车路标准式博弈策略集及收益

    Table  2.   Strategy sets and benefits of vehicle-road game

    策略组合 O1
    策略集 收益
    4 8 4 8
    O2 4 {4, 4} {8, 4} {0, 0} {1, -1}
    6 {4, 6} {8, 6} {-1, 1} {1, -1}
    8 {4, 8} {8, 8} {-1, 1} {0, 0}
    10 {4, 10} {8, 10} {-1, 1} {-1, 1}
    下载: 导出CSV

    表  3  不同离散路面激励及控制模型下的振动结果对比

    Table  3.   Comparison of vibration results of different hump road excitation and control models

    参数 路面激励振幅/m 控制模型对应的路面振幅/m
    0.01 0.05 0.10
    车身加速度均方根值/ (m·s-2) 0.01 0.059 9 0.058 1 0.056 2
    0.05 0.299 4 0.290 5 0.280 9
    0.10 0.598 8 0.581 1 0.561 4
    悬架动挠度均方根值/m 0.01 1.063 6 1.066 4 1.070 1
    0.05 5.318 2 5.331 8 5.349 8
    0.10 10.636 5 10.663 5 10.699 7
    理论能耗均方根值/ W 0.01 0.140 2 0.154 0 0.167 3
    0.05 3.504 6 3.848 9 4.181 8
    0.10 14.018 4 15.395 6 16.727 0
    下载: 导出CSV

    表  4  模型性能对比

    Table  4.   Comparison of model performance  %

    工况 模型 性能参数
    车身加速度 悬架动挠度 轮胎动载荷 理论能耗
    连续工况情况1 对照LQR -14.24 4.03 4.97 1.52
    连续工况情况2 对照LQR -14.23 4.26 5.08 0.62
    混合工况情况1 对照LQR -11.60 5.33 5.42 1.32
    基于观测 -4.07 0.67 3.01 1.34
    混合工况情况2 对照LQR -10.05 5.24 5.09 0.64
    基于观测 -10.85 5.31 5.43 0.72
    下载: 导出CSV
  • [1] THEUNISSEN J, TOTA A, GRUBER P, et al. Preview-based techniques for vehicle suspension control: a state-of-the-art review[J]. Annual Reviews in Control, 2021, 51: 206-235.
    [2] ZHAO D X, WANG L L, LI Y L, et al. Extraction of preview elevation of road based on 3D sensor[J]. Measurement, 2018, 127: 104-114.
    [3] 陈潇凯, 曾洺锴, 刘向, 等. 基于VSL-MPC的半主动悬架预瞄控制研究[J]. 汽车工程, 2022, 44(10): 1537-1546.

    CHEN Xiao-kai, ZENG Ming-kai, LIU Xiang, et al. Research on semi-active suspension preview control based on VSL-MPC[J]. Automotive Engineering, 2022, 44(10): 1537-1546.
    [4] GOHRLE C, SCHINDLER A, WAGNER A, et al. Road profile estimation and preview control for low-bandwidth active suspension systems[J]. IEEE/ASME Transactions on Mechatronics, 2014, 20(5): 2299-2310.
    [5] GOHRLE C, SCHINDLER A, WAGNER A, et al. Design and vehicle implementation of preview active suspension controllers[J]. IEEE Transactions on Control Systems Technology, 2014, 22(3): 1135-1142.
    [6] WU J, ZHOU H L, LIU Z Y, et al. Ride comfort optimization via speed planning and preview semi-active suspension control for autonomous vehicles on uneven roads[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8343-8355.
    [7] THEUNISSEN J, SORNIOTTI A, GRUBER P, et al. Regionless explicit model predictive control of active suspension systems with preview[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4877-4888.
    [8] DU Y C, CHEN J, ZHAO C, et al. Comfortable and energy-efficient speed control of autonomous vehicles on rough pavements using deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2022, 134: 103489.
    [9] WANG R C, LIU W, DING R K, et al. Switching control of semi-active suspension based on road profile estimation[J]. Vehicle System Dynamics, 2022, 60(6): 1972-1992.
    [10] KANG S W, KIM J S, KIM G W. Road roughness estimation based on discrete Kalman filter with unknown input[J]. Vehicle System Dynamics, 2019, 57(10): 1530-1544.
    [11] GORGES C, KEMAL Ö, LIEBICH R. Impact detection using a machine learning approach and experimental road roughness classification[J]. Mechanical Systems and Signal Processing, 2019, 117: 738-756.
    [12] QIN Y C, WEI C F, TANG X L, et al. A novel nonlinear road profile classification approach for controllable suspension system: simulation and experimental validation[J]. Mechanical Systems and Signal Processing, 2019, 125: 79-98.
    [13] WANG Z F, DONG M M, QIN Y C, et al. Suspension system state estimation using adaptive Kalman filtering based on road classification[J]. Vehicle System Dynamics, 2017, 55(3): 371-398.
    [14] QIN Y C, XIANG C L, WANG Z F, et al. Road excitation classification for semi-active suspension system based on system response[J]. Journal of Vibration and Control, 2018, 24(13): 2732-2748.
    [15] 梁冠群, 赵通, 王岩, 等. 基于LSTM网络的路面不平度辨识方法[J]. 汽车工程, 2021, 43(4): 509-517, 628.

    LIANG Guan-qun, ZHAO Tong, WANG Yan, et al. Road unevenness identification based on LSTM network[J]. Automotive Engineering, 2021, 43(4): 509-517, 628.
    [16] 吴骁, 史文库, 陈志勇. 基于交互式多模型卡尔曼滤波的主动悬架控制[J]. 汽车工程, 2023, 45(7): 1200-1211, 1253.

    WU Xiao, SHI Wen-ku, CHEN Zhi-yong. Active suspension control based on interacting multiple model Kalman filter[J]. Automotive Engineering, 2023, 45(7): 1200-1211, 1253.
    [17] 李以农, 朱哲葳, 郑玲, 等. 基于路面识别的主动馈能悬架多目标控制与优化[J]. 交通运输工程学报, 2021, 21(2): 129-137. doi: 10.19818/j.cnki.1671-1637.2021.02.011

    LI Yi-nong, ZHU Zhe-wei, ZHENG Ling, et al. Multi-objective control and optimization of active energy-regenerative suspension based on road recognition[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 129-137. doi: 10.19818/j.cnki.1671-1637.2021.02.011
    [18] KRATH J, SCHVRMANN L, VON KORFLESCH H F O. Revealing the theoretical basis of gamification: a systematic review and analysis of theory in research on gamification, serious games and game-based learning[J]. Computers in Human Behavior, 2021, 125: 106963.
    [19] WANG K F, GOU C, DUAN Y J, et al. Generative adversarial networks: introduction and outlook[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4 (4): 588-598.
    [20] CUI J J, LIU Y W, NALLANATHAN A. Multi-agent reinforcement learning-based resource allocation for UAV networks[J]. IEEE Transactions on Wireless Communications, 2020, 19 (2): 729-743.
    [21] LI N, YAO Y, KOLMANOVSKY I, et al. Game-theoretic modeling of multi-vehicle interactions at uncontrolled intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(2): 1428-1442.
    [22] 兰凤崇, 刘迎节, 陈吉清, 等. 基于动态博弈算法的切入场景下自动驾驶车辆运动规划研究[J]. 汽车工程, 2023, 45(1): 9-19.

    LAN Feng-chong, LIU Ying-jie, CHEN Ji-qing, et al. Study on motion planning of autonomous vehicles in cut-in scenes based on dynamic game algorithm[J]. Automotive Engineering, 2023, 45(1): 9-19.
    [23] WANG M, HOOGENDOORN S P, DAAMEN W, et al. Game theoretic approach for predictive lane-changing and car-following control[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 73-92.
    [24] 胡益恺, 王春香, 杨明. 智能车辆决策方法研究综述[J]. 上海交通大学学报, 2021, 55(8): 1035-1048.

    HU Yi-kai, WANG Chun-xiang, YANG Ming. Decision making method of intelligent vehicles: a survey[J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 1035-1048.
    [25] DAI C H, ZONG C F, ZHANG D, et al. A bargaining game-based human-machine shared driving control authority allocation strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(10): 10572-10586
    [26] 卢少波, 谢菲菲, 张博涵, 等. 基于非对称势场的人车协同博弈避撞[J]. 汽车工程, 2022, 44(10): 1484-1493.

    LU Shao-bo, XIE Fei-fei, ZHANG Bo-han, et al. Human-vehicle cooperative game collision avoidance based on asymmetric potential fields[J]. Automotive Engineering, 2022, 44(10): 1484-1493.
    [27] 王刚, 李昆鹏, 景晖, 等. 基于Q学习的整车主动悬架免参数H控制[J]. 汽车工程, 2023, 45(12): 2260-2271.

    WANG Gang, LI Kun-peng, JING Hui, et al. Parameter-free H control of vehicle active suspension based on Q-learning[J]. Automotive Engineering, 2023, 45(12): 2260-2271.
    [28] 李仲兴, 沈安诚, 江洪. 电控空气悬架多智能体博弈控制系统研究[J]. 汽车工程, 2020, 42(6): 793-800.

    LI Zhong-xing, SHEN An-cheng, JIANG Hui. Research on multi-agent game control system of an electronic air suspension[J]. Automotive Engineering, 2020, 42(6): 793-800.
    [29] 陈士安, 管毓亮, 任洁雨, 等. 悬架馈能作动器力学特性测试及非线性主动控制器设计[J]. 交通运输工程学报, 2022, 22(4): 232-243. doi: 10.19818/j.cnki.1671-1637.2022.04.018

    CHEN Shi-an, GUAN Yu-liang, REN Jie-yu, et al. Mechanical characteristics test and nonlinear active controller design of energy-regenerative actuator for suspension[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 232-243. doi: 10.19818/j.cnki.1671-1637.2022.04.018
    [30] 李仲兴, 唐伟, 黄建宇, 等. 横向互联空气悬架多智能体减振器系统博弈控制[J]. 交通运输工程学报, 2018, 18(5): 130-139. doi: 10.19818/j.cnki.1671-1637.2018.05.013

    LI Zhong-xing, TANG Wei, HUANG Jian-yu, et al. Game control of multi-agent damper system for laterally interconnected air suspension[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 130-139. doi: 10.19818/j.cnki.1671-1637.2018.05.013
    [31] 王龙, 黄锋. 多智能体博弈、学习与控制[J]. 自动化学报, 2023, 49(3): 580-613.

    WANG Long, HUANG Feng. An interdisciplinary survey of multi-agent games, learning, and control[J]. Acta Automatica Sinica, 2023, 49(3): 580-613.
    [32] ZHANG M H, JING X J, WANG G. Bioinspired nonlinear dynamics-based adaptive neural network control for vehicle suspension systems with uncertain/unknown dynamics and input delay[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12646-12656.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  40
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 录用日期:  2025-04-30
  • 修回日期:  2025-02-14
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回