Research on suspension model switching preview control based on road surface vertical excitation game decision
-
摘要: 针对表观路面不平度与实际路面垂向激励不同的情况,提出一种基于博弈论的路面垂向激励感知决策方法,用于悬架预瞄控制,提升了车辆在复杂路面激励工况下的平顺性;基于悬架最优控制理论,针对不同道路激励模式,采用多目标优化算法优化控制模型,综合所有激励模式下的控制模型,建立了悬架模型切换控制系统,根据路面垂向激励切换控制器的控制参数,使悬架的振动状态保持最优;对比了预瞄悬架在相同路面激励、不同控制器参数下的振动响应结果,分析了控制器参数对振动响应的影响;将悬架的控制视为控制器与路面激励的博弈,以提升平顺性为目标,在不同道路激励下,当道路预瞄法与状态观测法的结果相互矛盾时,基于博弈论分析出其中的最优结果,作为悬架控制模型切换的依据。研究结果表明:基于博弈论,控制系统应根据功率谱密度指数或振幅较大的路面切换控制模型以提升平顺性;相对于未采用博弈论的纯预瞄控制模型,连续路面上,当道路预瞄结果为A级,状态观测结果为D级时,基于博弈论的最优控制模型的车身加速度均方根值降低了14.24%;冲击路面上,车身加速度峰值降低了5.86%;对于混合路面,车身加速度均方根值降低了11.60%,各工况下悬架动挠度、轮胎动变形、能耗均方根值的提升均不超过10%。该方法可有效提升车辆在各种复杂路面工况下的平顺性。Abstract: To address the inconsistency between apparent road surface roughness and actual vertical road excitation, a game theory-based vertical road excitation perception and decision-making method was proposed for preview control of the suspension model, aiming to improve the ride comfort of vehicles under complex road excitation conditions. Based on optimal suspension control theory, a multi-objective optimization algorithm was used to optimize the control models for different road excitation patterns. By integrating the control models under all excitation patterns, a suspension model switching control system was established. The controller parameters were switched according to vertical road excitation so that the vibration state of the suspension was kept optimal. The vibration responses under the same road excitation and different controller parameters were compared, and the influence of controller parameters on vibration responses was analyzed. Suspension control was regarded as a game between the controller and the road excitation. To improve ride comfort, when the results of the road preview method and the state observation method were contradictory under different road excitations, the optimal result was analyzed based on game theory and used as the basis for suspension control model switching. Analysis results show that based on the game theory, the control system should switch the control model according to the power spectral density index or road amplitude to improve ride comfort. Compared with the pure preview control model without game theory, on continuous road surfaces, when the preview result is grade A, and the state observation result is grade D, the root mean square (RMS) of vehicle acceleration of the optimal control model based on the game theory decreases by 14.24%. On the impact road surfaces, the peak value of the vehicle acceleration decreases by 5.86%. On mixed road surfaces, the RMS of the vehicle acceleration decreases by 11.60%, and the RMS of suspension's dynamic deflection, tire's dynamic travel, and energy consumption all increase by less than 10%. This method is applicable to improving the ride comfort of vehicles equipped with preview suspension systems under various complex road conditions.
-
表 1 不同连续路面激励及控制参数下的振动结果对比
Table 1. Comparison of vibration results of different continuous road surface excitation and controller parameters
振动结果 激励等级 控制模型对应的路面等级 ISO A d=4 ISO B d=6 ISO C d=8 ISO D d=10 车身加速度均方根值/(m·s-2) ISO A 0.287 8 0.257 0 0.245 7 0.244 6 ISO B 0.557 1 0.517 5 0.495 3 0.471 6 ISO C 1.096 5 1.030 9 1.016 5 1.009 3 ISO D 2.234 8 2.026 9 1.950 5 1.943 3 悬架动挠度均方根值/ m ISO A 0.004 4 0.004 5 0.004 5 0.004 6 ISO B 0.013 2 0.014 4 0.015 2 0.016 6 ISO C 0.026 9 0.027 6 0.028 9 0.030 8 ISO D 0.060 5 0.061 3 0.061 8 0.063 3 理论能耗均方根值/W ISO A 3.173 6 3.272 1 3.324 0 3.395 8 ISO B 17.387 8 18.082 7 18.753 1 18.991 4 ISO C 100.528 0 108.322 7 119.051 6 152.293 1 ISO D 370.536 1 383.236 9 399.923 5 409.178 6 表 2 车路标准式博弈策略集及收益
Table 2. Strategy sets and benefits of vehicle-road game
策略组合 车O1 策略集 收益 4 8 4 8 路O2 4 {4, 4} {8, 4} {0, 0} {1, -1} 6 {4, 6} {8, 6} {-1, 1} {1, -1} 8 {4, 8} {8, 8} {-1, 1} {0, 0} 10 {4, 10} {8, 10} {-1, 1} {-1, 1} 表 3 不同离散路面激励及控制模型下的振动结果对比
Table 3. Comparison of vibration results of different hump road excitation and control models
参数 路面激励振幅/m 控制模型对应的路面振幅/m 0.01 0.05 0.10 车身加速度均方根值/ (m·s-2) 0.01 0.059 9 0.058 1 0.056 2 0.05 0.299 4 0.290 5 0.280 9 0.10 0.598 8 0.581 1 0.561 4 悬架动挠度均方根值/m 0.01 1.063 6 1.066 4 1.070 1 0.05 5.318 2 5.331 8 5.349 8 0.10 10.636 5 10.663 5 10.699 7 理论能耗均方根值/ W 0.01 0.140 2 0.154 0 0.167 3 0.05 3.504 6 3.848 9 4.181 8 0.10 14.018 4 15.395 6 16.727 0 表 4 模型性能对比
Table 4. Comparison of model performance
% 工况 模型 性能参数 车身加速度 悬架动挠度 轮胎动载荷 理论能耗 连续工况情况1 对照LQR -14.24 4.03 4.97 1.52 连续工况情况2 对照LQR -14.23 4.26 5.08 0.62 混合工况情况1 对照LQR -11.60 5.33 5.42 1.32 基于观测 -4.07 0.67 3.01 1.34 混合工况情况2 对照LQR -10.05 5.24 5.09 0.64 基于观测 -10.85 5.31 5.43 0.72 -
[1] THEUNISSEN J, TOTA A, GRUBER P, et al. Preview-based techniques for vehicle suspension control: a state-of-the-art review[J]. Annual Reviews in Control, 2021, 51: 206-235. [2] ZHAO D X, WANG L L, LI Y L, et al. Extraction of preview elevation of road based on 3D sensor[J]. Measurement, 2018, 127: 104-114. [3] 陈潇凯, 曾洺锴, 刘向, 等. 基于VSL-MPC的半主动悬架预瞄控制研究[J]. 汽车工程, 2022, 44(10): 1537-1546.CHEN Xiao-kai, ZENG Ming-kai, LIU Xiang, et al. Research on semi-active suspension preview control based on VSL-MPC[J]. Automotive Engineering, 2022, 44(10): 1537-1546. [4] GOHRLE C, SCHINDLER A, WAGNER A, et al. Road profile estimation and preview control for low-bandwidth active suspension systems[J]. IEEE/ASME Transactions on Mechatronics, 2014, 20(5): 2299-2310. [5] GOHRLE C, SCHINDLER A, WAGNER A, et al. Design and vehicle implementation of preview active suspension controllers[J]. IEEE Transactions on Control Systems Technology, 2014, 22(3): 1135-1142. [6] WU J, ZHOU H L, LIU Z Y, et al. Ride comfort optimization via speed planning and preview semi-active suspension control for autonomous vehicles on uneven roads[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8343-8355. [7] THEUNISSEN J, SORNIOTTI A, GRUBER P, et al. Regionless explicit model predictive control of active suspension systems with preview[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4877-4888. [8] DU Y C, CHEN J, ZHAO C, et al. Comfortable and energy-efficient speed control of autonomous vehicles on rough pavements using deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2022, 134: 103489. [9] WANG R C, LIU W, DING R K, et al. Switching control of semi-active suspension based on road profile estimation[J]. Vehicle System Dynamics, 2022, 60(6): 1972-1992. [10] KANG S W, KIM J S, KIM G W. Road roughness estimation based on discrete Kalman filter with unknown input[J]. Vehicle System Dynamics, 2019, 57(10): 1530-1544. [11] GORGES C, KEMAL Ö, LIEBICH R. Impact detection using a machine learning approach and experimental road roughness classification[J]. Mechanical Systems and Signal Processing, 2019, 117: 738-756. [12] QIN Y C, WEI C F, TANG X L, et al. A novel nonlinear road profile classification approach for controllable suspension system: simulation and experimental validation[J]. Mechanical Systems and Signal Processing, 2019, 125: 79-98. [13] WANG Z F, DONG M M, QIN Y C, et al. Suspension system state estimation using adaptive Kalman filtering based on road classification[J]. Vehicle System Dynamics, 2017, 55(3): 371-398. [14] QIN Y C, XIANG C L, WANG Z F, et al. Road excitation classification for semi-active suspension system based on system response[J]. Journal of Vibration and Control, 2018, 24(13): 2732-2748. [15] 梁冠群, 赵通, 王岩, 等. 基于LSTM网络的路面不平度辨识方法[J]. 汽车工程, 2021, 43(4): 509-517, 628.LIANG Guan-qun, ZHAO Tong, WANG Yan, et al. Road unevenness identification based on LSTM network[J]. Automotive Engineering, 2021, 43(4): 509-517, 628. [16] 吴骁, 史文库, 陈志勇. 基于交互式多模型卡尔曼滤波的主动悬架控制[J]. 汽车工程, 2023, 45(7): 1200-1211, 1253.WU Xiao, SHI Wen-ku, CHEN Zhi-yong. Active suspension control based on interacting multiple model Kalman filter[J]. Automotive Engineering, 2023, 45(7): 1200-1211, 1253. [17] 李以农, 朱哲葳, 郑玲, 等. 基于路面识别的主动馈能悬架多目标控制与优化[J]. 交通运输工程学报, 2021, 21(2): 129-137. doi: 10.19818/j.cnki.1671-1637.2021.02.011LI Yi-nong, ZHU Zhe-wei, ZHENG Ling, et al. Multi-objective control and optimization of active energy-regenerative suspension based on road recognition[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 129-137. doi: 10.19818/j.cnki.1671-1637.2021.02.011 [18] KRATH J, SCHVRMANN L, VON KORFLESCH H F O. Revealing the theoretical basis of gamification: a systematic review and analysis of theory in research on gamification, serious games and game-based learning[J]. Computers in Human Behavior, 2021, 125: 106963. [19] WANG K F, GOU C, DUAN Y J, et al. Generative adversarial networks: introduction and outlook[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4 (4): 588-598. [20] CUI J J, LIU Y W, NALLANATHAN A. Multi-agent reinforcement learning-based resource allocation for UAV networks[J]. IEEE Transactions on Wireless Communications, 2020, 19 (2): 729-743. [21] LI N, YAO Y, KOLMANOVSKY I, et al. Game-theoretic modeling of multi-vehicle interactions at uncontrolled intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(2): 1428-1442. [22] 兰凤崇, 刘迎节, 陈吉清, 等. 基于动态博弈算法的切入场景下自动驾驶车辆运动规划研究[J]. 汽车工程, 2023, 45(1): 9-19.LAN Feng-chong, LIU Ying-jie, CHEN Ji-qing, et al. Study on motion planning of autonomous vehicles in cut-in scenes based on dynamic game algorithm[J]. Automotive Engineering, 2023, 45(1): 9-19. [23] WANG M, HOOGENDOORN S P, DAAMEN W, et al. Game theoretic approach for predictive lane-changing and car-following control[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 73-92. [24] 胡益恺, 王春香, 杨明. 智能车辆决策方法研究综述[J]. 上海交通大学学报, 2021, 55(8): 1035-1048.HU Yi-kai, WANG Chun-xiang, YANG Ming. Decision making method of intelligent vehicles: a survey[J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 1035-1048. [25] DAI C H, ZONG C F, ZHANG D, et al. A bargaining game-based human-machine shared driving control authority allocation strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(10): 10572-10586 [26] 卢少波, 谢菲菲, 张博涵, 等. 基于非对称势场的人车协同博弈避撞[J]. 汽车工程, 2022, 44(10): 1484-1493.LU Shao-bo, XIE Fei-fei, ZHANG Bo-han, et al. Human-vehicle cooperative game collision avoidance based on asymmetric potential fields[J]. Automotive Engineering, 2022, 44(10): 1484-1493. [27] 王刚, 李昆鹏, 景晖, 等. 基于Q学习的整车主动悬架免参数H∞控制[J]. 汽车工程, 2023, 45(12): 2260-2271.WANG Gang, LI Kun-peng, JING Hui, et al. Parameter-free H∞ control of vehicle active suspension based on Q-learning[J]. Automotive Engineering, 2023, 45(12): 2260-2271. [28] 李仲兴, 沈安诚, 江洪. 电控空气悬架多智能体博弈控制系统研究[J]. 汽车工程, 2020, 42(6): 793-800.LI Zhong-xing, SHEN An-cheng, JIANG Hui. Research on multi-agent game control system of an electronic air suspension[J]. Automotive Engineering, 2020, 42(6): 793-800. [29] 陈士安, 管毓亮, 任洁雨, 等. 悬架馈能作动器力学特性测试及非线性主动控制器设计[J]. 交通运输工程学报, 2022, 22(4): 232-243. doi: 10.19818/j.cnki.1671-1637.2022.04.018CHEN Shi-an, GUAN Yu-liang, REN Jie-yu, et al. Mechanical characteristics test and nonlinear active controller design of energy-regenerative actuator for suspension[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 232-243. doi: 10.19818/j.cnki.1671-1637.2022.04.018 [30] 李仲兴, 唐伟, 黄建宇, 等. 横向互联空气悬架多智能体减振器系统博弈控制[J]. 交通运输工程学报, 2018, 18(5): 130-139. doi: 10.19818/j.cnki.1671-1637.2018.05.013LI Zhong-xing, TANG Wei, HUANG Jian-yu, et al. Game control of multi-agent damper system for laterally interconnected air suspension[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 130-139. doi: 10.19818/j.cnki.1671-1637.2018.05.013 [31] 王龙, 黄锋. 多智能体博弈、学习与控制[J]. 自动化学报, 2023, 49(3): 580-613.WANG Long, HUANG Feng. An interdisciplinary survey of multi-agent games, learning, and control[J]. Acta Automatica Sinica, 2023, 49(3): 580-613. [32] ZHANG M H, JING X J, WANG G. Bioinspired nonlinear dynamics-based adaptive neural network control for vehicle suspension systems with uncertain/unknown dynamics and input delay[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12646-12656. -
下载: