留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶远程驾控人机交互界面优化设计研究

李梦霞 徐图远 邹天悦 柳晨光 郑茂 初秀民 严新平

李梦霞, 徐图远, 邹天悦, 柳晨光, 郑茂, 初秀民, 严新平. 船舶远程驾控人机交互界面优化设计研究[J]. 交通运输工程学报, 2025, 25(3): 304-316. doi: 10.19818/j.cnki.1671-1637.2025.03.020
引用本文: 李梦霞, 徐图远, 邹天悦, 柳晨光, 郑茂, 初秀民, 严新平. 船舶远程驾控人机交互界面优化设计研究[J]. 交通运输工程学报, 2025, 25(3): 304-316. doi: 10.19818/j.cnki.1671-1637.2025.03.020
LI Meng-xia, XU Tu-yuan, ZOU Tian-yue, LIU Chen-guang, ZHENG Mao, CHU Xiu-min, YAN Xin-ping. Research on optimal design of human-machine interaction interface of remote navigation and control ships[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 304-316. doi: 10.19818/j.cnki.1671-1637.2025.03.020
Citation: LI Meng-xia, XU Tu-yuan, ZOU Tian-yue, LIU Chen-guang, ZHENG Mao, CHU Xiu-min, YAN Xin-ping. Research on optimal design of human-machine interaction interface of remote navigation and control ships[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 304-316. doi: 10.19818/j.cnki.1671-1637.2025.03.020

船舶远程驾控人机交互界面优化设计研究

doi: 10.19818/j.cnki.1671-1637.2025.03.020
基金项目: 

a国家自然科学基金项目 52401422

中国博士后科学基金项目 GZC20241296

详细信息
    作者简介:

    李梦霞(1994-),女,浙江东阳人,武汉理工大学副研究员,工学博士,从事船舶远程驾控与自主航行研究

    通讯作者:

    严新平(1959-),男,江西莲花人,中国工程院院士,武汉理工大学教授,工学博士

  • 中图分类号: U664.82

Research on optimal design of human-machine interaction interface of remote navigation and control ships

Funds: 

National Natural Science Foundation of China 52401422

China Postdoctoral Science Foundation Project GZC20241296

More Information
    Corresponding author: YAN Xin-ping (1959-), male, academician of Chinese Academy of Engineering, professor, PhD, xpyan@whut.edu.cn
Article Text (Baidu Translation)
  • 摘要: 为保障船舶远程驾驶的安全性与可靠性,提出了一种船舶远程驾控人机交互界面优化方法,深入挖掘远程驾控员在操控过程中的视觉注意力分布变化情况,基于视点时序演化规律和界面分区重要度进行人机交互界面优化;通过分析在子界面的时序分布,提炼视点时序演化规律;建立子界面之间的逻辑关系和影响数值,通过相互影响程度量化各子界面的重要程度;基于视点时序演化规律和界面分区重要度的分析,确定人机交互界面各分区的位置关系、排列顺序和界面占比,实现对船舶远程驾控人机交互界面的优化;以重庆奉节船舶远程驾驶试验为例,开展转向、追越等场景试验。分析结果表明:在远程驾控员视点时序演化规律中,视点在“船艏视角”和“远程遥控船舶工况”之间相互转换有接近50%的占比;在界面重要度分析中,“船艏视角”和“远程遥控船舶工况”2个界面的视点分布权重总和有近70%占比。所提方法适用于远程驾驶船舶的人机交互界面优化设计,可面向不同智能化等级的远程驾驶船舶,提出人机交互界面优化设计方案。

     

  • 图  1  人机交互界面优化技术路线

    Figure  1.  Technical approach of optimization for HMI inferences

    图  2  试验船舶

    Figure  2.  Test ship

    图  3  岸基驾控中心实景

    Figure  3.  Real scene of shore-based control center

    图  4  Tobii Pro系列遥测式眼动仪

    Figure  4.  Remote eye tracker "Tobii Pro"

    图  5  人机交互界面

    Figure  5.  HMI inference

    图  6  数据分析区域划分

    Figure  6.  Regional segmentation based on data analysis

    图  7  权重有向分布

    Figure  7.  Weighted directed distribution

    图  8  视点热力分布

    Figure  8.  Viewpoint thermal distribution

    图  9  关刀峡水道

    Figure  9.  Guandao Gorge waterway

    图  10  转向追越场景轨迹

    Figure  10.  Trajectory of turning-to and chasing scene

    图  11  人机交互界面视点转移规律

    Figure  11.  Law of viewpoint transfer in HMI interface

    图  12  转向追越场景视点热力分布

    Figure  12.  Viewpoint thermal distribution in turning-to and chasing scene

    图  13  转向场景视点转移规律

    Figure  13.  Law of viewpoint transfer in turning-to scene

    图  14  转向场景视点热力分布

    Figure  14.  Viewpoint thermal distribution in turning-to scene

    图  15  追越场景视点转移规律

    Figure  15.  Law of viewpoint transfer in chasing scene

    图  16  追越场景视点热力分布

    Figure  16.  Viewpoint thermal distribution in chasing scene

    图  17  人机交互界面优化设计方案(等级2)

    Figure  17.  HMI optimization design scheme (degree two)

    图  18  人机交互界面优化设计方案(等级3)

    Figure  18.  HMI optimization design scheme (degree three)

    表  1  眼动仪技术参数

    Table  1.   Parameters of eye tracker

    规格项目 指标参数
    眼球追踪技术 基于视频的瞳孔角膜反射式眼动仪,明瞳与暗瞳追踪。单眼动追踪传感器捕获双眼图像,提供3D空间内准确的视线位置、眼睛位置和瞳孔直径测量。
    采样频率/Hz 60或33
    精确度/(°) 0.26(平均误差)
    准确度/(°) 0.45
    眼动仪延迟 约1帧
    眨眼时间补偿 约1帧
    追踪恢复时间/ms 50
    操作距离 从眼动仪起45~95 cm
    头动自由度 从眼动仪起65~75 cm
    推荐屏幕尺寸 最大27英寸(16∶9比例)
    数据处理 Tobii EyeChipTMASIC芯片
    功耗 典型功耗小于2.0 W,最大功耗为6.0 W
    参照光源 暗瞳光源模组、明瞳光源模组
    下载: 导出CSV

    表  2  部分数据示例

    Table  2.   Partial data examples

    记录时间戳 船艏视角-A 实时运动状态-B 船舶工况-C 驾驶台舱内视角-D 电子航道图与AIS融合-E
    1705371376019 0 0 0 0 1
    1705371376039 1 0 0 0 0
    1705371376059 0 0 0 1 0
    1705371376079 1 0 0 0 0
    1705371376099 0 1 0 0 0
    下载: 导出CSV

    表  3  人机交互界面优化标准

    Table  3.   Optimization standard of HMI interface

    界面位置关系 界面面积占比
    界面视点演化规律(视点转移链路概率占比) 标准 界面分区重要度(分区重要度权重) 标准
    最大或不小于40% 界面相邻 a 界面占比a±10%
    30%~40% 界面间隔不大于1
    其他 界面允许间隔
    下载: 导出CSV

    表  4  试验初始参数

    Table  4.   Initial parameters

    会遇局面 船舶 初始位置 初始速度/kn 初始航向/(°) 相对距离/m
    经度/(°) 纬度/(°)
    转向 本船 109.428 0 30.994 2 1.56 280
    追越 本船 109.434 4 30.992 4 8.28 080 376.26
    目标船 109.437 6 30.993 5 5.52 064
    下载: 导出CSV

    表  5  子界面转移总体比例分布

    Table  5.   Overall transfer ratio distribution across sub-interfaces %

    转移后 转移前
    A B C D E
    A 0.00 4.56 25.42 5.04 1.20
    B 5.52 0.00 5.28 0.24 0.48
    C 24.22 5.28 0.00 3.84 3.60
    D 5.28 0.72 3.36 0.00 0.48
    E 0.96 0.96 2.88 0.72 0.00
    下载: 导出CSV

    表  6  转向场景子界面转移比例分布

    Table  6.   Transfer ratio distribution in turning-to scene across sub-interfaces  %

    转移后 转移前
    A B C D E
    A 0.00 5.10 25.00 6.12 1.53
    B 5.61 0.00 3.06 0.51 1.02
    C 25.00 2.55 0.00 3.57 4.08
    D 5.10 1.53 3.57 0.00 0.00
    E 1.53 1.02 4.08 0.00 0.00
    下载: 导出CSV

    表  7  追越场景子界面转移比例分布

    Table  7.   Transfer ratio distribution in chasing scene across sub-interfaces  %

    转移后 转移前
    A B C D E
    A 0.00 4.07 25.79 4.07 0.90
    B 5.43 0.00 7.24 0.00 0.00
    C 23.53 7.69 0.00 4.07 3.17
    D 5.43 0.00 3.17 0.00 0.90
    E 0.45 0.90 1.81 1.36 0.00
    下载: 导出CSV
  • [1] YOU X, MA F, LU S, et al. An integrated platform for the development of autonomous and remote-control ships[C]//TUHH. Proceedings of the 19th Conference on Computer and IT Applications in the Maritime Industries (COMPIT 2020). Pontignano: TUHH, 2020: 316-327.
    [2] 马枫, 陈晨, 刘佳仑, 等. 船岸协同支持下的内河船舶远程驾控系统关键技术研究[J]. 中国舰船研究, 2022, 17(5): 125-133.

    MA Feng, CHEN Chen, LIU Jia-lun, et al. Key technologies of ship remote control system in inland waterways under ship-shore cooperation conditions[J]. Chinese Journal of Ship Research, 2022, 17(5): 125-133.
    [3] 王远渊, 刘佳仑, 马枫, 等. 智能船舶远程驾驶控制技术研究现状与趋势[J]. 中国舰船研究, 2021, 16(1): 18-31.

    WANG Yuan-yuan, LIU Jia-lun, MA Feng, et al. Review and prospect of remote control intelligent ships[J]. Chinese Journal of Ship Research, 2021, 16(1): 18-31.
    [4] VENTIKOS N P, CHMURSKI A, LOUZIS K. A systems-based application for autonomous vessels safety: hazard identification as a function of increasing autonomy levels[J]. Safety Science, 2020, 131: 10.
    [5] MAN Y M, WEBER R, CIMBRITZ J, et al. Human factor issues during remote ship monitoring tasks: an ecological lesson for system design in a distributed context[J]. International Journal of Industrial Ergonomics, 2018, 68: 231-244.
    [6] PEETERS G, YAYLA G, CATOOR T, et al. An inland shore control centre for monitoring or controlling unmanned inland cargo vessels[J]. Journal of Marine Science and Engineering, 2020, 8(10): 27.
    [7] HAN C, ABEYSIRIWARDHANE A, CHAI S, et al. Future directions for human-centered transparent systems for engine room monitoring in shore control centers[J]. Journal of Marine Science and Engineering, 2022, DOI: 10.3390/jmse10010022.
    [8] NIU Y F, GAO Y, ZHANG Y T, et al. Improving eye-computer interaction interface design: ergonomic investigations of the optimum target size and gaze-triggering dwell time[J]. Journal of Eye Movement Research, 2019, 12(3): 14.
    [9] KLIEGL R, GRABNER E, ROLFS M, et al. Length, frequency, and predictability effects of words on eye movements in reading[J]. European Journal of Cognitive Psychology, 2004, 16(1/2): 262-284.
    [10] 叶凤云, 常琳, 秦琴, 等. 基于虚假信息特征的社交媒体大学生用户感知信任研究[J]. 情报理论与实践, 2024, 47(10): 118-127.

    YE Feng-yun, CHANG Lin, QIN Qin, et al. Research of social media college students' perceived trust on false information features[J]. Information Studies: Theory and Application, 2024, 47(10): 118-127.
    [11] 范超杰, 韩得民, 刘嘉滢, 等. 基于驾驶绩效的铁路人因安全评价指标体系研究[J]. 铁道科学与工程学报, 2024, 21(11): 4442-4455.

    FAN Chao-jie, HAN De-min, LIU Jia-ying, et al. Railway human factors safety evaluation index system based on driving performance[J]. Journal of Railway Science and Engineering, 2024, 21(11): 4442-4455.
    [12] TOREINI P, LANGNER M, MAEDCHE A. Using eye-tracking for visual attention feedback[C]//NEURO I S. Proceedings of the Information Systems and Neuroscience (NeuroIS) Retreat Workshop. Berlin: Springer, 2019: 2-6.
    [13] ZHOU X C, CEN Q Y, QIU H F. Effects of urban waterfront park landscape elements on visual behavior and public preference: evidence from eye-tracking experiments[J]. Urban Forestry and Urban Greening, 2023, 82: 10.
    [14] CHOU W Y S, TRIVEDI N, PETERSON E, et al. How do social media users process cancer prevention messages on Facebook? An eye-tracking study[J]. Patient Education and Counseling, 2020, 103(6): 1161-1167.
    [15] JONES W, KLAIMAN C, RICHARDSON S, et al. Eye-tracking-based measurement of social visual engagement compared with expert clinical diagnosis of autism[J]. Journal of the American Medical Association, 2023, 330(9): 854-865.
    [16] LEE D Y, SHIN Y, PARK R W, et al. Use of eye tracking to improve the identification of attention-deficit/hyperactivity disorder in children[J]. Scientific Reports, 2023, 13(1). 14469.
    [17] NORDFäLT J, AHLBOM C P. Utilising eye-tracking data in retailing field research: a practical guide[J]. Journal of Retailing, 2024, 100(1): 148-160.
    [18] 苏思晴, 吕婷. 云旅游: 基于眼动实验的在线评论对旅游直播体验的影响研究[J]. 旅游学刊, 2022, 37(8): 86-104.

    SU Si-qing, LYU Ting. Virtual tourism: the impact of online comments on experience of tourism live broadcast based on eye movement[J]. Tourism Tribune, 2022, 37(8): 86-104.
    [19] 郭晓芳, 赵伟慧, 张金滨. 基于眼动实验蒙古族服饰特征差异及分类研究[J]. 丝绸, 2024, 61(5): 94-104.

    GUO Xiao-fang, ZHAO Wei-hui, ZHANG Jin-bin. Research on the differences and classification of Mongolian costumes' characteristics based on eye-moving experiment[J]. Journal of Silk, 2024, 61(5): 94-104.
    [20] LI Y, DENG J, WU Q, et al. Eye-tracking signals based affective classification employing deep gradient convolutional neural networks[J]. International Journal of Interactive Multimedia and Artificial Intelligence, 2021, 7(2): 34-43.
    [21] 郑一航, 李刚, 果霖, 等. 基于眼动追踪技术的直流往复锯造型兴趣区研究[J]. 电动工具, 2024(2): 1-4, 12.

    ZHENG Yi-hang, LI Gang, GUO Lin, et al. Research on the area of interest for DC reciprocating saw modeling based on eye tracking technology[J]. Electric Tool, 2024(2): 1-4, 12.
    [22] ZONTONE P, AFFANNI A, BERNARDINI R, et al. Emotional response analysis using electrodermal activity, electrocardiogram and eye tracking signals in drivers with various car setups[C]// IEEE. Proceedings of the 28th European Signal Processing Conference (EUSIPCO 2021). New York: IEEE, 2021: 18-22.
    [23] 杜志刚, 潘晓东, 郭雪斌. 公路隧道进出口行车安全评价指标应用研究[J]. 同济大学学报(自然科学版), 2008, 36(3): 325-329.

    DU Zhi-gang, PAN Xiao-dong, GUO Xue-bin. Evaluation index's Application studies on safety at highway tunnel's entrance and exit[J]. Journal of Tongji University (Natural Science), 2008, 36(3): 325-329.
    [24] 张杰. 基于眼动仪的驾驶员视点分布特性研究[J]. 湖南交通科技, 2012, 38(4): 153-155, 70.

    ZHANG Jie. Research on the distribution characteristics of driver's viewpoint based on eye tracker[J]. Hunan Communication and Technology, 2012, 38(4): 153-155, 70.
    [25] LIU S, YIN G. Research on color adaptation of automobile head-up display interface[C]//IEEE. 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA 2021). New York: IEEE, 2021: 55-59.
    [26] 李旭彪, 肖春, 李鼎夫. 山地城市快速路弯坡路段驾驶员眼动行为特性[J]. 公路, 2021, 66(8): 275-280.

    LI Xu-biao, XIAO Chun, LI Ding-fu. Characteristics of eye movement behavior of drivers on curved slopes of expressways in mountainous cities[J]. Highway, 2021, 66(8): 275-280.
    [27] 李梦霞, 徐图远, 邹天悦, 等. 内河船舶远程驾控技术试验[J]. 交通运输工程学报, 2025, 25(2): 141-155. doi: 10.19818/j.cnki.1671-1637.2025.02.009

    LI Meng-xia, XU Tu-yuan, ZOU Tian-yue, et al. Experimental research on remote navigation and control technology for inland waterway ships[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 141-155. doi: 10.19818/j.cnki.1671-1637.2025.02.009
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  115
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-23
  • 录用日期:  2025-04-30
  • 修回日期:  2025-03-06
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回