留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车载命名数据网络缓存污染攻击检测及抑制机制

樊娜 李佳龙 高宇昕 张俊辉 叶莉萍

樊娜, 李佳龙, 高宇昕, 张俊辉, 叶莉萍. 车载命名数据网络缓存污染攻击检测及抑制机制[J]. 交通运输工程学报, 2025, 25(3): 330-345. doi: 10.19818/j.cnki.1671-1637.2025.03.022
引用本文: 樊娜, 李佳龙, 高宇昕, 张俊辉, 叶莉萍. 车载命名数据网络缓存污染攻击检测及抑制机制[J]. 交通运输工程学报, 2025, 25(3): 330-345. doi: 10.19818/j.cnki.1671-1637.2025.03.022
FAN Na, LI Jia-long, GAO Yu-xin, ZHANG Jun-hui, YE Li-ping. Mechanism for identifying and resisting cache pollution attack in vehicular named data networking[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 330-345. doi: 10.19818/j.cnki.1671-1637.2025.03.022
Citation: FAN Na, LI Jia-long, GAO Yu-xin, ZHANG Jun-hui, YE Li-ping. Mechanism for identifying and resisting cache pollution attack in vehicular named data networking[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 330-345. doi: 10.19818/j.cnki.1671-1637.2025.03.022

车载命名数据网络缓存污染攻击检测及抑制机制

doi: 10.19818/j.cnki.1671-1637.2025.03.022
基金项目: 

国家自然科学基金项目 62472049

详细信息
    作者简介:

    樊娜(1978-),女,陕西渭南人,长安大学副教授,工学博士,博士后,从事物联网安全、智能交通领域研究

  • 中图分类号: U495

Mechanism for identifying and resisting cache pollution attack in vehicular named data networking

Funds: 

National Natural Science Foundation of China 62472049

More Information
    Corresponding author: FAN Na (1978-), female, associate professor, PhD, postdoctoral, fnsea@chd.edu.cn
Article Text (Baidu Translation)
  • 摘要: 为了在车载命名数据网络中准确检测并有效抑制缓存污染攻击,融合内容流行度预测,设计了一种基于深度强化学习的自适应攻击检测与抑制机制;针对缓存污染攻击的特点,基于支持向量机设计了一种网络状态判断方法,在识别出状态异常时,即触发缓存污染攻击的检测与抑制功能;同时,结合深度Q网络和K-means算法,设计了一种自适应攻击检测方法,该方法能够根据网络特征动态调整攻击检测的时间间隔,并由路侧单元依据车辆节点的内容流行度预测结果和请求记录,对缓存污染攻击产生的虚假流行内容进行筛选,从而实现攻击的精准快速检测;设计了一种基于动态黑名单的缓存污染攻击抑制方法,将攻击产生的虚假流行内容放入黑名单,并根据检测结果动态更新黑名单,车辆节点和路侧单元根据黑名单从缓存中剔除虚假流行内容,同时丢弃与其相应的兴趣包,从而有效抑制缓存污染攻击,减少对用户的影响;搭建了半实物仿真平台,通过半实物仿真试验进一步验证了所提方法对缓存污染攻击的检测性能。仿真结果表明:当面临高强度缓存污染攻击时,所提出的方法在低密度和高密度车载命名数据网络场景下,缓存污染攻击检测的准确率分别提升至0.91和0.92,车辆节点的内容获取延迟分别降低为0.113 s和0.112 s,表明该方法性能优于现有方法,能够有效地识别抑制缓存污染攻击,提升车载命名数据网络的安全性。

     

  • 图  1  VNDN转发机制

    Figure  1.  VNDN forwarding mechanism

    图  2  VNDN中CPA攻击场景

    Figure  2.  CPA attack scenario in VNDN

    图  3  DRLDS框架总体架构

    Figure  3.  DRLDS framework overall architecture

    图  4  DRLDS处理流程

    Figure  4.  DRLDS process flow

    图  5  V1、V2及RSU1、RSU2位置

    Figure  5.  Positions of V1, V2 and RSU1, RSU2

    图  6  FLA对平均缓存命中率的影响

    Figure  6.  Impact of FLA on average cache hit ratio

    图  7  FLA对平均内容获取延迟的影响

    Figure  7.  Impact of FLA on average content acquisition delay

    图  8  LDA对平均缓存命中率的影响

    Figure  8.  Impact of LDA on average cache hit ratio

    图  9  LDA对平均内容获取延迟的影响

    Figure  9.  Impact of LDA on average content acquisition delay

    图  10  G的不同取值对准确率的影响

    Figure  10.  Influence of different values of G on accuracy

    图  11  G的不同取值对假阳性率的影响

    Figure  11.  Influence of different values of G on false positive rate

    图  12  G的不同取值对假阴性率的影响

    Figure  12.  Influence of different values of G on false negative rate

    图  13  低密度场景下准确率的试验结果

    Figure  13.  Experimental results of accuracy in low-density scenarios

    图  14  高密度场景下准确率的试验结果

    Figure  14.  Experimental results of accuracy in high-density scenarios

    图  15  低密度场景下假阳性率的试验结果

    Figure  15.  Experimental results of false positive rate in low-density scenarios

    图  16  低密度场景下假阴性率的试验结果

    Figure  16.  Experimental results of false negative rate in low-density scenarios

    图  17  高密度场景下假阳性率的试验结果

    Figure  17.  Experimental results of false positive rate in high-density scenarios

    图  18  高密度场景下假阴性率的试验结果

    Figure  18.  Experimental results of false negative rate in high-density scenarios

    图  19  低密度场景RSU端平均缓存命中率试验结果

    Figure  19.  Experimental result of average cache hit ratio of RSU in low-density scenarios

    图  20  低密度场景车辆节点平均缓存命中率试验结果

    Figure  20.  Experimental results of average cache hit ratio of vehicle nodes in low-density scenarios

    图  21  高密度场景RSU端平均缓存命中率试验结果

    Figure  21.  Experimental results of average cache hit ratio of RSU in high-density scenarios

    图  22  高密度场景车辆节点平均缓存命中率试验结果

    Figure  22.  Experimental results of average cache hit ratio of vehicle nodes in high-density scenarios

    图  23  低密度场景车辆节点平均内容获取延迟试验结果

    Figure  23.  Experimental results of average content acquisition delay of vehicle nodes in low-density scenarios

    图  24  高密度场景车辆节点平均内容获取延迟试验结果

    Figure  24.  Experimental results of average content acquisition delay of vehicle nodes in high-density scenarios

    图  25  车辆测试路线

    Figure  25.  Vehicle test roadmap

    图  26  试验过程中车辆的位置

    Figure  26.  Positions of the vehicles during the experiment

    表  1  试验参数

    Table  1.   Experimental parameters

    参数名称
    试验区域尺寸/m×m 2 000×2 000
    RSU通信半径/m 500
    车辆节点缓存 20
    RSU缓存 200
    试验持续时间/s 2 000
    合法用户请求频率/(次·s-1) 10
    攻击强度 0.0~1.0
    可用内容数量/个 2 000
    准确率阈值AK 0.85
    假阳性率阈值FK 0.15
    假阴性率阈值BK 0.15
    初始时间间隔T0/s 1
    车辆节点数量/veh 40 150
    下载: 导出CSV

    表  2  FLA的检测准确率、假阳性率和假阴性率

    Table  2.   Detection accuracy, false positive rate and false negative rate of FLA

    攻击强度 准确率 假阳性率 假阴性率
    0.8 0.915 0.108 0.114
    1.0 0.920 0.104 0.108
    下载: 导出CSV

    表  3  LDA的检测准确率、假阳性率和假阴性率

    Table  3.   Detection accuracy, false positive rate and false negative rate of LDA

    攻击强度 准确率 假阳性率 假阴性率
    0.8 0.912 0.112 0.119
    1.0 0.918 0.115 0.123
    下载: 导出CSV
  • [1] 马永杰, 程时升, 马芸婷, 等. 卷积神经网络及其在智能交通系统中的应用综述[J]. 交通运输工程学报, 2021, 21(4): 48-71. doi: 10.19818/j.cnki.1671-1637.2021.04.003

    MA Yong-jie, CHENG Shi-sheng, MA Yun-ting, et al. Review of convolutional neural network and its application in intelligent transportation system[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 48-71. doi: 10.19818/j.cnki.1671-1637.2021.04.003
    [2] 汤红波, 郑林浩, 葛国栋, 等. CCN中基于节点状态模型的缓存污染攻击检测算法[J]. 通信学报, 2016, 37(9): 1-9.

    TANG Hong-bo, ZHENG Lin-hao, GE Guo-dong, et al. Detection algorithm for cache pollution attacks based on node state model in content centric networking[J]. Journal on Communications, 2016, 37(9): 1-9.
    [3] 韩江萍, 汪浩东, 杨佳宇, 等. NDN-Ad Hoc网络中基于多属性决策的可靠转发策略[J]. 通信学报, 2024, 45(5): 151-164.

    HAN Jiang-ping, WANG Hao-dong, YANG Jia-yu, et al. Reliable forwarding strategy based on multiple attribute decision-making in NDN-Ad Hoc networks[J]. Journal on Communications, 2024, 45(5): 151-164.
    [4] CHEN C, WANG C, QIU T, et al. A secure content sharing scheme based on blockchain in vehicular named data networks[J]. IEEE Transactions on Industrial Informatics, 2019, 16(5): 3278-3289.
    [5] CHATTERJEE T, RUJ S, BIT S D. Security issues in named data networks[J]. Computer, 2018, 51(1): 66-75.
    [6] CONTI M, GASTI P, TEOLI M. A lightweight mechanism for detection of cache pollution attacks in named data networking[J]. Computer Networks, 2013, 57(16): 3178-3191.
    [7] SALAH H, ALFATAFTA M, SAYEDAHMED S, et al. CoMon++: Preventing cache pollution in NDN efficiently and effectively[C]//IEEE. 2017 42nd Conference on Local Computer Networks. New York: IEEE, 2017: 43-51.
    [8] KAMIMOTO T, MORI K, UMEDA S, et al. Cache protection method based on prefix hierarchy for content-oriented network[C]//IEEE. 2016 13th Annual Consumer Communications and Networking Conference. New York: IEEE, 2016: 417-422.
    [9] GUO H R, WANG X D, CHANG K, et al. Exploiting path diversity for thwarting pollution attacks in named data networking[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(9): 2077-2090.
    [10] KUMAR N, SRIVASTAVA S. IBPC: An approach for mitigation of cache pollution attack in NDN using interface-based popularity[J]. Arabian Journal for Science and Engineering, 2024, 49(3): 3241-3251.
    [11] ZHANG G Z, LIU J Q, CHANG X L, et al. Combining popularity and locality to enhance in-network caching performance and mitigate pollution attacks in content-centric networking[J]. IEEE Access, 2017, 5: 19012-19022.
    [12] ZHOU J, LUO J T, DENG L L, et al. Cache pollution prevention mechanism based on cache partition in V-NDN[C]// IEEE. 2020 9th International Conference on Communications in China. New York: IEEE, 2020: 330-335.
    [13] QU D P, LYU G X, QU S J, et al. An effective and lightweight countermeasure scheme to multiple network attacks in NDN[J]. IEEE/ACM Transactions on Networking, 2021, 30(2): 515-528.
    [14] YAO L, CHEN Z Y, DAI H P, et al. Exploiting non-cooperative game against cache pollution attack in vehicular content centric network[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 19(6): 3873-3886.
    [15] KAR P, CHEN L, SHENG W X, et al. Advancing NDN security: Efficient identification of cache pollution attacks through rank comparison[J]. Internet of Things, 2024, 26: 101142.
    [16] KARAMI A, GUERRERO-ZAPATA M. An ANFIS-based cache replacement method for mitigating cache pollution attacks in named data networking[J]. Computer Networks, 2015, 80: 51-65.
    [17] YAO L, ZENG YJ, WANG X, et al. Detection and defense of cache pollution based on popularity prediction in named data networking[J]. IEEE Transactions on Dependable and Secure Computing, 2020, 18(6): 2848-2860.
    [18] YAO L, FAN Z Z, DENG J, et al. Detection and defense of cache pollution attacks using clustering in named data networks[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 17(6): 1310-1321.
    [19] YAO L, ZHENG Z L, WANG X, et al. Detection of cache pollution attack based on ensemble learning in ICN-based VANET[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 20(4): 3287-3298.
    [20] LIU Y, ZHI T, XI H D, et al. A novel cache replacement scheme against cache pollution attack in content-centric networks[C]//IEEE. 2019 8th IEEE/CIC International Conference on Communications in China. New York: IEEE, 2019: 207-212.
    [21] SINGH V P, UJJWAL R L. Gini impurity based NDN cache pollution attack defence mechanism[J]. Journal of Information and Optimization Sciences, 2020, 41(6): 1353-1363.
    [22] MAN D P, MU Y J, GUO J F, et al. Cache pollution detection method based on GBDT in information-centric network[J]. Security and Communication Networks, 2021, 2021(1): 6658066.
    [23] BUVANESVARI R M, SURESH JOSEPH K. RBFNN: A radial basis function neural network model for detecting and mitigating the cache pollution attacks in named data networking[J]. IET Networks, 2020, 9(5): 255-261.
    [24] RANI P V, SHALINIE S M. FuRL: Fuzzy RBM learning framework to detect and mitigate network anomalies in information centric network[J]. Sādhanā, 2020, 45(1): 100.
    [25] HIDOURI A, TOUATI H, HADDED M, et al. Q-ICAN: A Q-learning based cache pollution attack mitigation approach for named data networking[J]. Computer Networks, 2023, 235: 109998.
    [26] NASSERALA A, BASTOS I V, MONTEIRO MORAES I. Cache nFace: A simple countermeasure for the producer-consumer collusion attack in named data networking[J]. Annals of Telecommunications, 2019, 74: 125-137.
    [27] ZHOU J, LUO J T, WANG J X, et al. Cache pollution prevention mechanism based on deep reinforcement learning in NDN[J]. Journal of Communications and Information Networks, 2021, 6(1): 91-100.
    [28] HIDOURI A, TOUATI H, HADDED M, et al. Improving NDN resilience: A novel mitigation mechanism against cache pollution attack[C]//IEEE. 2024 International Wireless Communications and Mobile Computing. New York: IEEE, 2024: 1564-1569.
    [29] JOSEPH K. Multi-classifier and meta-heuristic based cache pollution attacks and interest flooding attacks detection and mitigation model for named data networking[J]. Journal of Experimental and Theoretical Artificial Intelligence, 2024, 36(6): 839-864.
    [30] YAO L, LI J, DENG J, et al. Detection of cache pollution attack based on federated learning in ultra-dense network[J]. Computers and Security, 2023, 124: 102965.
    [31] CHEN C, WANG C, QIU T, et al. Caching in vehicular named data networking: Architecture, schemes and future directions[J]. IEEE Communications Surveys and Tutorials, 2020, 22(4): 2378-2407.
    [32] XU Z W, CHEN B, WANG N H, et al. ELDA: Towards efficient and lightweight detection of cache pollution attacks in NDN[C]//IEEE. 2015 40th Conference on Local Computer Networks. New York: IEEE, 2015: 82-90.
    [33] 樊娜, 李佳龙, 高宇昕, 等. 面向车载命名数据网络的联邦流行度预测方法[J]. 微电子学与计算机, 2025, 42(6): 86-96.

    FAN Na, LI Jia-long, GAO Yu-xin, et al. A federated popularity prediction method for vehicular named data networking[J]. Microelectronics and Computer, 2025, 42(6): 86-96.
    [34] ANANTHAKRISHNAN S, TAHILIANI M P, TANDUR D, et al. Group based publisher-subscriber communication primitives for ndnSIM[C]//IEEE. 2020 14th International Conference on Advanced Networks and Telecommunications Systems. New York: IEEE, 2020: 1-6.
    [35] ROSENSWEIG E J, KUROSE J, TOWSLEY D. Approximate models for general cache networks[C]//IEEE. 2010 Proceedings IEEE INFOCOM. New York: IEEE, 2010: 1-9.
    [36] ZHAN F P, JING P, RAN B. Infrastructure allocation for improving sensing accuracy and connectivity probability based on combination strategy in vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15244-15255.
  • 加载中
图(26) / 表(3)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  56
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-10
  • 录用日期:  2025-05-06
  • 修回日期:  2025-03-13
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回