Eco-driving trajectory optimization model at signalized intersection considering shared phase
-
摘要: 提出了一种动态规划-交叉口冲突管理策略,在合用相位条件下优化智能网联车辆接近信号交叉口的轨迹,并缓解交叉口内部冲突;基于车辆状态信息、信号相位及配时信息建立动态规划模型,对进口道车辆进行轨迹优化,最大限度利用绿灯时间并减少车辆等待时间;针对存在车流冲突的合用信号相位场景,设计了交叉口冲突管理策略,该策略通过车辆虚映射建立冲突车辆在交叉口通行次序,通过智能驾驶人模型创建安全间距,保证交叉口内交通顺畅通行,并对西安永庆路与永隆路信号交叉口进行了仿真分析。结果表明:与左转保护相位、合用相位情形下的动态规划模型相比,所提模型控制下平均速度分别提高约12.88%、4.14%,百公里能耗分别降低约9.79%、3.97%;与渗透率为0的情形相比,所提模型在渗透率为20%~100%情形下,整体百公里能耗减少约3.56%~13.97%;所提模型控制下的碰撞时间与后侵入时间分析表明,安全性得到显著改善;在交通需求和信号周期波动条件下,所提模型均可实现车辆从进口道至驶离交叉口全过程轨迹优化。Abstract: A dynamic programming-intersection conflict management strategy was proposed to optimize the trajectories of intelligent connected vehicles approaching signalized intersections under shared phase conditions and mitigate conflicts at intersections. A dynamic programming model was established based on the information of vehicle state and signal phase and timing to optimize the trajectories of vehicles upstream of the signalized intersection, maximize throughput during green time, and reduce waiting time. Besides, an intersection conflict management strategy was designed for the shared phase scenario with traffic conflicts. The strategy determined the sequence of conflicting vehicles passing through the intersection by virtual vehicle mapping and created a safe gap by an intelligent driver model, ensuring smooth traffic flow within the intersection. Finally, a simulation analysis was conducted on the signalized intersection of Yongqing Road and Yonglong Road in Xi'an City. Simulation results show that in contrast to left-turn protected phase and shared phase scenarios under the control of the dynamic programming model, the proposed model improves average speed by 12.88% and 4.14% and reduces energy consumption per 100 km by 9.79% and 3.97%, respectively. Compared to the scenario with 0% penetration rate, the total energy consumption per 100 km under the proposed model decreases by 3.56%-13.97% in scenarios with penetration rates ranging from 20% to 100%. Analysis of the time to collision and post-encroachment time under the proposed model shows a significant improvement in safety. Furthermore, under conditions of varying traffic demands and fluctuating signal cycles, the proposed model can achieve trajectory optimization for vehicles throughout the entire process from entering the lane to leaving the intersection.
-
表 1 DP-ICMS模型下不同转向车辆控制模式
Table 1. Control modes for vehicles with different turning direction under DP-ICMS models
车辆流向 所在车道直行信号状态 右转车辆有无实际直行前车 控制模式 右转 红灯 无 直接通行 红灯 有 应与冲突直行前车保持安全距离 绿灯 - 直接通行 外侧车道直行 红灯 - GLOSA+与对向冲突左转前车、右转前车保持安全距离 绿灯 无 GLOSA+与对向冲突左转前车、右转前车保持安全距离 绿灯 有 GLOSA+与对向冲突左转前车保持安全距离 中间车道直行 - - GLOSA+与冲突左转前车保持安全距离 左转车辆 - - GLOSA+与对向双车道直行冲突前车保持安全距离 表 2 参数设置
Table 2. Parameter setting
参数 含义 取值 w1 速度松弛量权重 1 w2 位置松弛量权重 1 w3 末速度与匀速段期望速度的速度波动权重 0.2 w4 初速度与匀速段期望速度的速度波动权重 0.2 amax 轨迹优化最大加速度/(m·s-2) 2.6 amin 轨迹优化最小加速度/(m·s-2) -4.5 tx 每辆车排队消散时间/s 1.5 vIDM IDM模型下的期望速度/(m·s-1) 18 vmax 道路限速/(m·s-1) 18 d0 最小停车间距/m 2.5 Ts 车头时距/s 1.5 Tc 信号周期/s 99 表 3 不同模型仿真结果
Table 3. Simulation results under different models
模型 整体平均速度/(m·s-1) 整体平均百公里能耗/(kW·h) tTTC < 2 s占比/% tPET < 1.5 s占比/% 场景1-IDM 12.81 14.89 56.65 88.64 场景2-IDM 10.28 16.53 18.49 0.00 场景1-DP 11.36 13.34 45.28 87.56 场景2-DP 10.48 14.20 5.29 0.00 DP-ICMS 11.83 12.81 2.64 9.10 表 4 混行条件下仿真结果
Table 4. Simulation results under mixed condition
ICV渗透率/% 整体平均速度/(m·s-1) 整体平均百公里能耗/(kW·h) tTTC < 2 s占比/% tPET < 1.5 s占比/% 0 12.81 14.89 56.65 88.64 20 12.70 14.36 37.90 89.03 40 12.47 13.86 32.31 69.68 60 12.22 13.56 23.03 49.03 80 11.97 13.14 13.24 27.74 100 11.83 12.81 2.64 9.10 表 5 不同交通需求仿真结果
Table 5. Simulation results under different traffic demands
交通需求/(pcu·h-1) 模型 平均车头时距/s 平均速度/(m·s-1) 左转150、直行300 场景1-IDM 3.26 9.75 DP-ICMS 2.67 11.40 左转150、直行350 场景1-IDM 2.96 9.28 DP-ICMS 2.43 11.30 左转150、直行400 场景1-IDM 2.80 8.66 DP-ICMS 2.40 11.62 直行350、左转100 场景1-IDM 2.86 7.46 DP-ICMS 2.56 10.25 直行350、左转150 场景1-IDM 3.28 6.84 DP-ICMS 2.84 10.72 直行350、左转200 场景1-IDM 2.87 5.20 DP-ICMS 2.42 10.50 表 6 不同信号周期仿真结果
Table 6. Simulation results under different traffic signal cycles
信号周期/s 平均速度/(m·s-1) 整体平均百公里能耗/(kW·h) tTTC < 2 s占比/% tPET < 1.5 s占比/% 79 12.24 12.55 1.72 12.88 99 11.83 12.81 2.64 9.10 119 11.43 12.98 2.25 9.85 -
[1] 付锐, 张雅丽, 袁伟. 生态驾驶研究现状及展望[J]. 中国公路学报, 2019, 32(3): 1-12.FU Rui, ZHANG Ya-li, YUAN Wei. Progress and prospect in research on eco-driving[J]. China Journal of Highway and Transport, 2019, 32(3): 1-12. [2] WANG R M, ZHANG X R, XU Z G, et al. Research on performance and function testing of V2X in a closed test field[J]. Journal of Advanced Transportation, 2021, 2021: 9970978. [3] 杨澜, 赵祥模, 吴国垣, 等. 智能网联汽车协同生态驾驶策略综述[J]. 交通运输工程学报, 2020, 20(5): 58-72. doi: 10.19818/j.cnki.1671-1637.2020.05.004YANG Lan, ZHAO Xiang-mo, WU Guo-yuan, et al. Review on connected and automated vehicles based cooperative eco-driving strategies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 58-72. doi: 10.19818/j.cnki.1671-1637.2020.05.004 [4] 刘显贵, 王晖年, 洪经纬, 等. 网联环境下信号交叉口车速控制策略及优化[J]. 交通运输系统工程与信息, 2021, 21(2): 82-90.LIU Xian-gui, WANG Hui-nian, HONG Jing-wei, et al. Speed control strategy and optimization of signalized intersection in network environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 82-90. [5] 刘显贵, 洪经纬, 王晖年, 等. 基于前车速度预测的信号交叉口汽车生态驾驶控制策略[J]. 安全与环境学报, 2021, 21(6): 2743-2750.LIU Xian-gui, HONG Jing-wei, WANG Hui-nian, et al. Vehicle eco-driving control strategy based on speed prediction of the front vehicle at the signalized intersection[J]. Journal of Safety and Environment, 2021, 21(6): 2743-2750. [6] 胡永辉, 金旭峰, 王亦兵, 等. 智能网联混行动力异构交通流生态驾驶[J]. 中国公路学报, 2022, 35(3): 15-27.HU Yong-hui, JIN Xu-feng, WANG Yi-bing, et al. Eco-driving of connected and automated vehicles in mixed and power-heterogeneous traffic flow[J]. China Journal of Highway and Transport, 2022, 35(3): 15-27. [7] 鹿应荣, 许晓彤, 丁川, 等. 车联网环境下信号交叉口车速控制策略[J]. 交通运输系统工程与信息, 2018, 18(1): 50-58, 95.LU Ying-rong, XU Xiao-tong, DING Chuan, et al. A speed control strategy at signalized intersection under connected vehicle environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 50-58, 95. [8] 辛琪, 王嘉琪, 杨文科, 等. 信控路段混行交通生态驾驶深度强化学习模型[J]. 交通运输系统工程与信息, 2024, 24(3): 127-139.XIN Qi, WANG Jia-qi, YANG Wen-ke, et al. Eco-driving under mixed autonomy at signalized intersection: A deep reinforcement learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(3): 127-139. [9] 刘春禹, 刘永红, 罗霞, 等. 混合交通流环境下单交叉口自动驾驶车辆轨迹优化[J]. 交通运输系统工程与信息, 2022, 22(2): 154-162.LIU Chun-yu, LIU Yong-hong, LUO Xia, et al. Trajectory optimization of connected vehicles at isolated intersection in mixed traffic environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 154-162. [10] 蒋贤才, 徐慧智. 混合驾驶环境下交叉口空间资源动态控制方法[J]. 交通运输系统工程与信息, 2023, 23(6): 63-73.JIANG Xian-cai, XU Hui-zhi. Dynamic control method for intersection space resources in mixed traffic environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(6): 63-73. [11] JIANG X C, SHANG Q P. A dynamic CAV-dedicated lane allocation method with the joint optimization of signal timing parameters and smooth trajectory in a mixed traffic environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(6): 6436-6449. [12] 王润民, 张心睿, 赵祥模, 等. 混行环境下网联信号交叉口车路协同控制方法[J]. 交通运输工程学报, 2022, 22(3): 139-151. doi: 10.19818/j.cnki.1671-1637.2022.03.011WANG Run-min, ZHANG Xin-rui, ZHAO Xiang-mo, et al. Vehicle-infrastructure cooperative control method of connected and signalized intersection in mixed traffic environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 139-151. doi: 10.19818/j.cnki.1671-1637.2022.03.011 [13] 赵祥模, 张心睿, 王润民, 等. 网联交叉口信号-车辆轨迹协同优化控制方法[J]. 汽车工程, 2021, 43(11): 1577-1586.ZHAO Xiang-mo, ZHANG Xin-rui WANG Run-min, et al. Cooperative optimization control method of traffic signals and vehicle trajectories at connected intersection[J]. Automotive Engineering, 2021, 43(11): 1577-1586. [14] ZHAO W M, NGODUY D, SHEPHERD S, et al. A platoon based cooperative eco-driving model for mixed automated and human-driven vehicles at a signalised intersection[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 802-821. [15] 吴伟, 秦少敏, 马万经, 等. 考虑自动驾驶专用相位的交叉口信号控制方法[J]. 中国公路学报, 2023, 36(10): 183-196.WU Wei, QIN Shao-min, MA Wan-jing, et al. Intersection signal control method considering exclusive autonomous-vehicle phase[J]. China Journal of Highway and Transport, 2023, 36(10): 183-196. [16] 杜煜, 上官伟, 柴琳果, 等. 信号交叉口基于出发时刻预测的生态驾驶方法[J]. 中国公路学报, 2022, 35(6): 277-288.DU Yu, SHANGGUAN Wei, CHAI Lin-guo, et al. Eco-driving method for signalized intersection based on departure time prediction[J]. China Journal of Highway and Transport, 2022, 35(6): 277-288. [17] ZHOU M F, YU Y, QU X B. Development of an efficient driving strategy for connected and automated vehicles at signalized intersections: a reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 433-443. [18] 李捷, 吴晓东, 许敏, 等. 基于强化学习的城市场景多目标生态驾驶策略[J]. 汽车工程, 2023, 45(10): 1791-1802.LI Jie, WU Xiao-dong, XU Min, et al. Reinforcement learning based multi-objective eco-driving strategy in urban scenarios[J]. Automotive Engineering, 2023, 45(10): 1791-1802. [19] MOSHARAFIAN S, AFZALI S, MOHAMMADPOUR VELNI J. Leveraging autonomous vehicles in mixed-autonomy traffic networks with reinforcement learning-controlled intersections[J]. Transportation Letters, 2023, 15(9): 1218-1229. [20] LI J, FOTOUHI A, PAN W J, et al. Deep reinforcement learning-based eco-driving control for connected electric vehicles at signalized intersections considering traffic uncertainties[J]. Energy, 2023, 279: 128139. [21] 姜涵, 张健, 张海燕, 等. 基于强化学习的交叉口智能网联车多目标通行控制方法[J]. 交通信息与安全, 2024, 42(1): 84-93.JIANG Han, ZHANG Jian, ZHANG Hai-yan, et al. A multi- objective traffic control method for connected and automated vehicle at signalized intersection based on reinforcement learning[J]. Journal of Transport Information and Safety, 2024, 42(1): 84-93. [22] CHENG Y Q, HU X B, CHEN K M, et al. Online longitudinal trajectory planning for connected and autonomous vehicles in mixed traffic flow with deep reinforcement learning approach[J]. Journal of Intelligent Transportation Systems, 2023, 27(3): 396-410. [23] WEGENER M, KOCH L, EISENBARTH M, et al. Automated eco-driving in urban scenarios using deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 102967. [24] 陈浩, 庄伟超, 殷国栋, 等. 网联电动汽车信号灯控路口经济性驾驶策略[J]. 东南大学学报(自然科学版), 2021, 51(1): 178-186.CHEN Hao, ZHUANG Wei-chao, YIN Guo-dong, et al. Eco-driving control strategy of connected electric vehicle at signalized intersection[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(1): 178-186. [25] 王方凯, 杨晓光, 江泽浩, 等. 新型混合交通流场景下交叉口信号控制和轨迹控制协同优化方法[J]. 交通信息与安全, 2024, 42(1): 76-83, 123.WANG Fang-kai, YANG Xiao-guang, JIANG Ze-hao, et al. Joint optimization of intersection signal control and trajectory control in novel heterogenous traffic flow scenarios[J]. Journal of Transport Information and Safety, 2024, 42(1): 76-83, 123. [26] YE Q W, CHEN X M, LIAO R H, et al. Development and evaluation of a vehicle platoon guidance strategy at signalized intersections considering fuel savings[J]. Transportation Research Part D: Transport and Environment, 2019, 77: 120-131. [27] 钱国敏, 凡俊生, 章立辉, 等. 混行交叉口网联自动车专用道布设方案评价模型[J]. 长安大学学报(自然科学版), 2022, 42(2): 115-126.QIAN Guo-min, FAN Jun-sheng, ZHANG Li-hui, et al. Evaluation model for configuration schemes of dedicated connected and autonomous lanes at intersections with heterogeneous traffic flows[J]. Journal of Chang'an University (Natural Science Edition), 2022, 42(2): 115-126. [28] 吴伟, 刘洋, 刘威, 等. 自动驾驶环境下交叉口车辆路径规划与最优控制模型[J]. 自动化学报, 2020, 46(9): 1971-1985.WU Wei, LIU Yang, LIU Wei, et al. A novel autonomous vehicle trajectory planning and control model for connected-and-autonomous intersections[J]. Acta Automatica Sinica, 2020, 46(9): 1971-1985. [29] 宗芳, 石蕊, 刘怿轩, 等. 信号交叉口行车风险场建立及车辆通行行为优化[J]. 中国公路学报, 2022, 35(10): 244-253.ZONG Fang, SHI Rui, LIU Yi-xuan, et al. Construction of risk field and optimization of driving behaviors for signalized intersections[J]. China Journal of Highway and Transport, 2022, 35(10): 244-253. [30] KURCZVEIL T, LOPEZ P A, SCHNIEDER E. Implementation of an energy model and a charging infrastructure in SUMO[C]// BEHRISCH M, KRAJZEWICZ D, WEBER M. Simulation of Urban Mobility. Berlin: Springer, 2014: 33-43. -
下载: