留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合用相位信控路口生态驾驶轨迹优化模型

辛琪 王嘉琪 付锐 徐猛 周海洋 潘应久

辛琪, 王嘉琪, 付锐, 徐猛, 周海洋, 潘应久. 合用相位信控路口生态驾驶轨迹优化模型[J]. 交通运输工程学报, 2025, 25(3): 346-361. doi: 10.19818/j.cnki.1671-1637.2025.03.023
引用本文: 辛琪, 王嘉琪, 付锐, 徐猛, 周海洋, 潘应久. 合用相位信控路口生态驾驶轨迹优化模型[J]. 交通运输工程学报, 2025, 25(3): 346-361. doi: 10.19818/j.cnki.1671-1637.2025.03.023
XIN Qi, WANG Jia-qi, FU Rui, XU Meng, ZHOU Hai-yang, PAN Ying-jiu. Eco-driving trajectory optimization model at signalized intersection considering shared phase[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 346-361. doi: 10.19818/j.cnki.1671-1637.2025.03.023
Citation: XIN Qi, WANG Jia-qi, FU Rui, XU Meng, ZHOU Hai-yang, PAN Ying-jiu. Eco-driving trajectory optimization model at signalized intersection considering shared phase[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 346-361. doi: 10.19818/j.cnki.1671-1637.2025.03.023

合用相位信控路口生态驾驶轨迹优化模型

doi: 10.19818/j.cnki.1671-1637.2025.03.023
基金项目: 

国家自然科学基金项目 52002035

国家自然科学基金项目 52402417

陕西省重点研发计划 2024CY2-GJHX-87

陕西省自然科学基础研究计划项目 2025JC-YBMS-395

中央高校基本科研业务费专项资金项目 300102223205

详细信息
    作者简介:

    辛琪(1987-),男,陕西咸阳人,长安大学副教授,博士研究生导师,工学博士,从事智能车辆环境感知系统、运动规划系统、控制系统研究

    通讯作者:

    潘应久(1990-),男,山东章丘人,长安大学讲师,工学博士

  • 中图分类号: U491.2

Eco-driving trajectory optimization model at signalized intersection considering shared phase

Funds: 

National Natural Science Foundation of China 52002035

National Natural Science Foundation of China 52402417

Key R&D Program in Shaanxi Province of China 2024CY2-GJHX-87

Natural Science Basic Research Plan in Shaanxi Province of China 2025JC-YBMS-395

Fundamental Research Funds for the Central Universities 300102223205

More Information
Article Text (Baidu Translation)
  • 摘要: 提出了一种动态规划-交叉口冲突管理策略,在合用相位条件下优化智能网联车辆接近信号交叉口的轨迹,并缓解交叉口内部冲突;基于车辆状态信息、信号相位及配时信息建立动态规划模型,对进口道车辆进行轨迹优化,最大限度利用绿灯时间并减少车辆等待时间;针对存在车流冲突的合用信号相位场景,设计了交叉口冲突管理策略,该策略通过车辆虚映射建立冲突车辆在交叉口通行次序,通过智能驾驶人模型创建安全间距,保证交叉口内交通顺畅通行,并对西安永庆路与永隆路信号交叉口进行了仿真分析。结果表明:与左转保护相位、合用相位情形下的动态规划模型相比,所提模型控制下平均速度分别提高约12.88%、4.14%,百公里能耗分别降低约9.79%、3.97%;与渗透率为0的情形相比,所提模型在渗透率为20%~100%情形下,整体百公里能耗减少约3.56%~13.97%;所提模型控制下的碰撞时间与后侵入时间分析表明,安全性得到显著改善;在交通需求和信号周期波动条件下,所提模型均可实现车辆从进口道至驶离交叉口全过程轨迹优化。

     

  • 图  1  交叉口上游车辆速度引导

    Figure  1.  Vehicular speed guidance at upstream of intersection

    图  2  不同交通信号模型下车辆轨迹

    Figure  2.  Vehicular trajectories under different traffic signal models

    图  3  基于DP-ICMS的信号交叉口车辆轨迹优化流程

    Figure  3.  Optimization flow of vehicular trajectories at signalized intersections based on DP-ICMS

    图  4  基于DP的ICV绿灯优化速度引导

    Figure  4.  Green light optimized speed advisory of ICVs based on DP

    图  5  基于虚映射和IDM模型的ICMS流程

    Figure  5.  ICMS process based on virtual mapping and IDM model

    图  6  流量数据采集路段(单位: pcu·h-1)

    Figure  6.  Flow data collection section (unit: pcu·h-1)

    图  7  信号交叉口场景

    Figure  7.  Signalized intersection scenario

    图  8  不同场景交通信号设置

    Figure  8.  Traffic signal settings for different scenarios

    图  9  不同模型下平均等待时间对比

    Figure  9.  Comparisons of average waiting time under different models

    图  10  不同模型下车辆速度对比

    Figure  10.  Comparisons of vehicular speed under different models

    图  11  不同模型下车辆百公里能耗对比

    Figure  11.  Comparisons of vehicular energy consumption of per 100 km under different models

    图  12  不同模型下车辆安全性分布直方图

    Figure  12.  Histogram of vehicular safety distribution under different models

    图  13  混行条件下ICV控制场景

    Figure  13.  ICV control scenarios under mixed condition

    图  14  混行条件下车辆安全性分布直方图

    Figure  14.  Histogram of vehicular safety distribution under mixed condition

    图  15  不同交通需求下的智能网联车辆时空轨迹

    Figure  15.  ICV spatial-temporal trajectories under different traffic demands

    图  16  不同信号周期下指标变化

    Figure  16.  Indicator changes under different traffic signal cycles

    图  17  不同信号周期下车辆安全性分布直方图

    Figure  17.  Histogram of vehicular safety distribution under traffic signal cycles

    表  1  DP-ICMS模型下不同转向车辆控制模式

    Table  1.   Control modes for vehicles with different turning direction under DP-ICMS models

    车辆流向 所在车道直行信号状态 右转车辆有无实际直行前车 控制模式
    右转 红灯 直接通行
    红灯 应与冲突直行前车保持安全距离
    绿灯 - 直接通行
    外侧车道直行 红灯 - GLOSA+与对向冲突左转前车、右转前车保持安全距离
    绿灯 GLOSA+与对向冲突左转前车、右转前车保持安全距离
    绿灯 GLOSA+与对向冲突左转前车保持安全距离
    中间车道直行 - - GLOSA+与冲突左转前车保持安全距离
    左转车辆 - - GLOSA+与对向双车道直行冲突前车保持安全距离
    下载: 导出CSV

    表  2  参数设置

    Table  2.   Parameter setting

    参数 含义 取值
    w1 速度松弛量权重 1
    w2 位置松弛量权重 1
    w3 末速度与匀速段期望速度的速度波动权重 0.2
    w4 初速度与匀速段期望速度的速度波动权重 0.2
    amax 轨迹优化最大加速度/(m·s-2) 2.6
    amin 轨迹优化最小加速度/(m·s-2) -4.5
    tx 每辆车排队消散时间/s 1.5
    vIDM IDM模型下的期望速度/(m·s-1) 18
    vmax 道路限速/(m·s-1) 18
    d0 最小停车间距/m 2.5
    Ts 车头时距/s 1.5
    Tc 信号周期/s 99
    下载: 导出CSV

    表  3  不同模型仿真结果

    Table  3.   Simulation results under different models

    模型 整体平均速度/(m·s-1) 整体平均百公里能耗/(kW·h) tTTC < 2 s占比/% tPET < 1.5 s占比/%
    场景1-IDM 12.81 14.89 56.65 88.64
    场景2-IDM 10.28 16.53 18.49 0.00
    场景1-DP 11.36 13.34 45.28 87.56
    场景2-DP 10.48 14.20 5.29 0.00
    DP-ICMS 11.83 12.81 2.64 9.10
    下载: 导出CSV

    表  4  混行条件下仿真结果

    Table  4.   Simulation results under mixed condition

    ICV渗透率/% 整体平均速度/(m·s-1) 整体平均百公里能耗/(kW·h) tTTC < 2 s占比/% tPET < 1.5 s占比/%
    0 12.81 14.89 56.65 88.64
    20 12.70 14.36 37.90 89.03
    40 12.47 13.86 32.31 69.68
    60 12.22 13.56 23.03 49.03
    80 11.97 13.14 13.24 27.74
    100 11.83 12.81 2.64 9.10
    下载: 导出CSV

    表  5  不同交通需求仿真结果

    Table  5.   Simulation results under different traffic demands

    交通需求/(pcu·h-1) 模型 平均车头时距/s 平均速度/(m·s-1)
    左转150、直行300 场景1-IDM 3.26 9.75
    DP-ICMS 2.67 11.40
    左转150、直行350 场景1-IDM 2.96 9.28
    DP-ICMS 2.43 11.30
    左转150、直行400 场景1-IDM 2.80 8.66
    DP-ICMS 2.40 11.62
    直行350、左转100 场景1-IDM 2.86 7.46
    DP-ICMS 2.56 10.25
    直行350、左转150 场景1-IDM 3.28 6.84
    DP-ICMS 2.84 10.72
    直行350、左转200 场景1-IDM 2.87 5.20
    DP-ICMS 2.42 10.50
    下载: 导出CSV

    表  6  不同信号周期仿真结果

    Table  6.   Simulation results under different traffic signal cycles

    信号周期/s 平均速度/(m·s-1) 整体平均百公里能耗/(kW·h) tTTC < 2 s占比/% tPET < 1.5 s占比/%
    79 12.24 12.55 1.72 12.88
    99 11.83 12.81 2.64 9.10
    119 11.43 12.98 2.25 9.85
    下载: 导出CSV
  • [1] 付锐, 张雅丽, 袁伟. 生态驾驶研究现状及展望[J]. 中国公路学报, 2019, 32(3): 1-12.

    FU Rui, ZHANG Ya-li, YUAN Wei. Progress and prospect in research on eco-driving[J]. China Journal of Highway and Transport, 2019, 32(3): 1-12.
    [2] WANG R M, ZHANG X R, XU Z G, et al. Research on performance and function testing of V2X in a closed test field[J]. Journal of Advanced Transportation, 2021, 2021: 9970978.
    [3] 杨澜, 赵祥模, 吴国垣, 等. 智能网联汽车协同生态驾驶策略综述[J]. 交通运输工程学报, 2020, 20(5): 58-72. doi: 10.19818/j.cnki.1671-1637.2020.05.004

    YANG Lan, ZHAO Xiang-mo, WU Guo-yuan, et al. Review on connected and automated vehicles based cooperative eco-driving strategies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 58-72. doi: 10.19818/j.cnki.1671-1637.2020.05.004
    [4] 刘显贵, 王晖年, 洪经纬, 等. 网联环境下信号交叉口车速控制策略及优化[J]. 交通运输系统工程与信息, 2021, 21(2): 82-90.

    LIU Xian-gui, WANG Hui-nian, HONG Jing-wei, et al. Speed control strategy and optimization of signalized intersection in network environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 82-90.
    [5] 刘显贵, 洪经纬, 王晖年, 等. 基于前车速度预测的信号交叉口汽车生态驾驶控制策略[J]. 安全与环境学报, 2021, 21(6): 2743-2750.

    LIU Xian-gui, HONG Jing-wei, WANG Hui-nian, et al. Vehicle eco-driving control strategy based on speed prediction of the front vehicle at the signalized intersection[J]. Journal of Safety and Environment, 2021, 21(6): 2743-2750.
    [6] 胡永辉, 金旭峰, 王亦兵, 等. 智能网联混行动力异构交通流生态驾驶[J]. 中国公路学报, 2022, 35(3): 15-27.

    HU Yong-hui, JIN Xu-feng, WANG Yi-bing, et al. Eco-driving of connected and automated vehicles in mixed and power-heterogeneous traffic flow[J]. China Journal of Highway and Transport, 2022, 35(3): 15-27.
    [7] 鹿应荣, 许晓彤, 丁川, 等. 车联网环境下信号交叉口车速控制策略[J]. 交通运输系统工程与信息, 2018, 18(1): 50-58, 95.

    LU Ying-rong, XU Xiao-tong, DING Chuan, et al. A speed control strategy at signalized intersection under connected vehicle environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 50-58, 95.
    [8] 辛琪, 王嘉琪, 杨文科, 等. 信控路段混行交通生态驾驶深度强化学习模型[J]. 交通运输系统工程与信息, 2024, 24(3): 127-139.

    XIN Qi, WANG Jia-qi, YANG Wen-ke, et al. Eco-driving under mixed autonomy at signalized intersection: A deep reinforcement learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(3): 127-139.
    [9] 刘春禹, 刘永红, 罗霞, 等. 混合交通流环境下单交叉口自动驾驶车辆轨迹优化[J]. 交通运输系统工程与信息, 2022, 22(2): 154-162.

    LIU Chun-yu, LIU Yong-hong, LUO Xia, et al. Trajectory optimization of connected vehicles at isolated intersection in mixed traffic environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 154-162.
    [10] 蒋贤才, 徐慧智. 混合驾驶环境下交叉口空间资源动态控制方法[J]. 交通运输系统工程与信息, 2023, 23(6): 63-73.

    JIANG Xian-cai, XU Hui-zhi. Dynamic control method for intersection space resources in mixed traffic environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(6): 63-73.
    [11] JIANG X C, SHANG Q P. A dynamic CAV-dedicated lane allocation method with the joint optimization of signal timing parameters and smooth trajectory in a mixed traffic environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(6): 6436-6449.
    [12] 王润民, 张心睿, 赵祥模, 等. 混行环境下网联信号交叉口车路协同控制方法[J]. 交通运输工程学报, 2022, 22(3): 139-151. doi: 10.19818/j.cnki.1671-1637.2022.03.011

    WANG Run-min, ZHANG Xin-rui, ZHAO Xiang-mo, et al. Vehicle-infrastructure cooperative control method of connected and signalized intersection in mixed traffic environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 139-151. doi: 10.19818/j.cnki.1671-1637.2022.03.011
    [13] 赵祥模, 张心睿, 王润民, 等. 网联交叉口信号-车辆轨迹协同优化控制方法[J]. 汽车工程, 2021, 43(11): 1577-1586.

    ZHAO Xiang-mo, ZHANG Xin-rui WANG Run-min, et al. Cooperative optimization control method of traffic signals and vehicle trajectories at connected intersection[J]. Automotive Engineering, 2021, 43(11): 1577-1586.
    [14] ZHAO W M, NGODUY D, SHEPHERD S, et al. A platoon based cooperative eco-driving model for mixed automated and human-driven vehicles at a signalised intersection[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 802-821.
    [15] 吴伟, 秦少敏, 马万经, 等. 考虑自动驾驶专用相位的交叉口信号控制方法[J]. 中国公路学报, 2023, 36(10): 183-196.

    WU Wei, QIN Shao-min, MA Wan-jing, et al. Intersection signal control method considering exclusive autonomous-vehicle phase[J]. China Journal of Highway and Transport, 2023, 36(10): 183-196.
    [16] 杜煜, 上官伟, 柴琳果, 等. 信号交叉口基于出发时刻预测的生态驾驶方法[J]. 中国公路学报, 2022, 35(6): 277-288.

    DU Yu, SHANGGUAN Wei, CHAI Lin-guo, et al. Eco-driving method for signalized intersection based on departure time prediction[J]. China Journal of Highway and Transport, 2022, 35(6): 277-288.
    [17] ZHOU M F, YU Y, QU X B. Development of an efficient driving strategy for connected and automated vehicles at signalized intersections: a reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 433-443.
    [18] 李捷, 吴晓东, 许敏, 等. 基于强化学习的城市场景多目标生态驾驶策略[J]. 汽车工程, 2023, 45(10): 1791-1802.

    LI Jie, WU Xiao-dong, XU Min, et al. Reinforcement learning based multi-objective eco-driving strategy in urban scenarios[J]. Automotive Engineering, 2023, 45(10): 1791-1802.
    [19] MOSHARAFIAN S, AFZALI S, MOHAMMADPOUR VELNI J. Leveraging autonomous vehicles in mixed-autonomy traffic networks with reinforcement learning-controlled intersections[J]. Transportation Letters, 2023, 15(9): 1218-1229.
    [20] LI J, FOTOUHI A, PAN W J, et al. Deep reinforcement learning-based eco-driving control for connected electric vehicles at signalized intersections considering traffic uncertainties[J]. Energy, 2023, 279: 128139.
    [21] 姜涵, 张健, 张海燕, 等. 基于强化学习的交叉口智能网联车多目标通行控制方法[J]. 交通信息与安全, 2024, 42(1): 84-93.

    JIANG Han, ZHANG Jian, ZHANG Hai-yan, et al. A multi- objective traffic control method for connected and automated vehicle at signalized intersection based on reinforcement learning[J]. Journal of Transport Information and Safety, 2024, 42(1): 84-93.
    [22] CHENG Y Q, HU X B, CHEN K M, et al. Online longitudinal trajectory planning for connected and autonomous vehicles in mixed traffic flow with deep reinforcement learning approach[J]. Journal of Intelligent Transportation Systems, 2023, 27(3): 396-410.
    [23] WEGENER M, KOCH L, EISENBARTH M, et al. Automated eco-driving in urban scenarios using deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 102967.
    [24] 陈浩, 庄伟超, 殷国栋, 等. 网联电动汽车信号灯控路口经济性驾驶策略[J]. 东南大学学报(自然科学版), 2021, 51(1): 178-186.

    CHEN Hao, ZHUANG Wei-chao, YIN Guo-dong, et al. Eco-driving control strategy of connected electric vehicle at signalized intersection[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(1): 178-186.
    [25] 王方凯, 杨晓光, 江泽浩, 等. 新型混合交通流场景下交叉口信号控制和轨迹控制协同优化方法[J]. 交通信息与安全, 2024, 42(1): 76-83, 123.

    WANG Fang-kai, YANG Xiao-guang, JIANG Ze-hao, et al. Joint optimization of intersection signal control and trajectory control in novel heterogenous traffic flow scenarios[J]. Journal of Transport Information and Safety, 2024, 42(1): 76-83, 123.
    [26] YE Q W, CHEN X M, LIAO R H, et al. Development and evaluation of a vehicle platoon guidance strategy at signalized intersections considering fuel savings[J]. Transportation Research Part D: Transport and Environment, 2019, 77: 120-131.
    [27] 钱国敏, 凡俊生, 章立辉, 等. 混行交叉口网联自动车专用道布设方案评价模型[J]. 长安大学学报(自然科学版), 2022, 42(2): 115-126.

    QIAN Guo-min, FAN Jun-sheng, ZHANG Li-hui, et al. Evaluation model for configuration schemes of dedicated connected and autonomous lanes at intersections with heterogeneous traffic flows[J]. Journal of Chang'an University (Natural Science Edition), 2022, 42(2): 115-126.
    [28] 吴伟, 刘洋, 刘威, 等. 自动驾驶环境下交叉口车辆路径规划与最优控制模型[J]. 自动化学报, 2020, 46(9): 1971-1985.

    WU Wei, LIU Yang, LIU Wei, et al. A novel autonomous vehicle trajectory planning and control model for connected-and-autonomous intersections[J]. Acta Automatica Sinica, 2020, 46(9): 1971-1985.
    [29] 宗芳, 石蕊, 刘怿轩, 等. 信号交叉口行车风险场建立及车辆通行行为优化[J]. 中国公路学报, 2022, 35(10): 244-253.

    ZONG Fang, SHI Rui, LIU Yi-xuan, et al. Construction of risk field and optimization of driving behaviors for signalized intersections[J]. China Journal of Highway and Transport, 2022, 35(10): 244-253.
    [30] KURCZVEIL T, LOPEZ P A, SCHNIEDER E. Implementation of an energy model and a charging infrastructure in SUMO[C]// BEHRISCH M, KRAJZEWICZ D, WEBER M. Simulation of Urban Mobility. Berlin: Springer, 2014: 33-43.
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  494
  • HTML全文浏览量:  75
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 录用日期:  2025-04-02
  • 修回日期:  2025-03-06
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回