Wind speed prediction along high-speed railway based on multi-time-interval wind speed fluctuation process division
-
摘要: 为了提升高铁沿线风速预测精度,实现预测预警,为大风调度提供足够时间窗口,以保障高铁大风场景下的运营安全,提出了一种基于风速波动过程划分的高铁沿线多时距注意力深度回声风速预测方法(MT-RFVMD-OD-Fu-Attention-DeepESN)。利用高铁沿线风速监测站点秒级风速采样数据和3 min风速采样数据,使用改进后的变分模态分解(RF-VMD)将2种分辨率的风速信号进行分解,并重构为趋势分量和脉动分量。通过连续小波变化(CWT)进行频率分析,找出变化周期,将2个分量划分为长度相等的时间序列单元。利用单元内风速物理特征和K-shape融合的聚类算法对2组趋势分量进行过程划分,形成风速波动过程数据库。最后,设计相似度优化动态时间调整(Op-DTW)算法,利用该算法在波动过程数据库中匹配出相似度较高的2种分辨率风速时间序列片段作为训练集,输入到所设计的多时距注意力深度回声状态预测网络(Fu-Attention-DeepESN)。依托京沪高铁沿线上3个风速站点实测风速监测数据进行实验验证,并同现有流行的风速预测方法进行对比。分析结果表明:站点K1005、K1245和K1066风速预测的均方根误差(RMSE)分别为0.234、0.282、0.306,平均绝对百分比误差(MAPE)分别为2.76%、2.27%、2.99%,风速正向误差(PWSE)分别为0.008、0.021、0.034。所提出的方法与对比方法中最好的相比,评价指标RMSE、MAPE、PWSE平均降低了27.8%、34.6%、27.1%,表明该研究能够有效处理高铁沿线秒级风信号中的复杂和非线性模式,提高风速预测的准确性和适应性。Abstract: To improve the accuracy of wind speed prediction along high-speed railway, realize prediction and warning, provide a sufficient time window for high-wind dispatch, and ensure the operation safety of the high-speed railway in high-wind scenarios, a wind speed prediction method for multi-temporal attention deep echo state network along the high-speed railway based on wind speed fluctuation process division (MT-RFVMD-OD-Fu-Attention-DeepESN) was proposed. By using sampling data of second-level and three-minute wind speed of wind speed monitoring stations along the high-speed railway, as well as the improved radio frequency variational mode decomposition (RF-VMD), the wind speed signals of two resolutions were decomposed and reconstructed into trend components and pulsation components. The frequency analysis was performed by continuous wavelet transform (CWT) to find the variation cycle and divide the two components into time series units of equal length. The clustering algorithm of physical characteristics of wind speed in the units and K-shape fusion was used to divide the two groups of trend components into processes to form a database for wind speed fluctuation processes. Finally, an algorithm for similarity-optimized dynamic time warping (Op-DTW) was designed. The algorithm was used to select wind speed time series fragments with high similarity at two resolutions in the fluctuation process database as training sets, which were input into the designed multi-temporal attention deep echo state prediction network (Fu-Attention-DeepESN). The experiment was verified by using wind speed monitoring data from three wind speed stations along the Beijing-Shanghai high-speed railway and compared with the existing popular methods for wind speed prediction. Analysis results show that the root mean square errors (RMSEs) of wind speed prediction in stations K1005, K1245, and K1066 were 0.234, 0.282, and 0.306, respectively, and the mean absolute percentage errors (MAPEs) were 2.76%, 2.27%, and 2.99%, respectively. The positive wind speed errors (PWSEs) were 0.008, 0.021, and 0.034, respectively. Compared with those of the best of the compared methods, the evaluation indices RMSE, MAPE, and PWSE of the proposed method are reduced by 27.8%, 34.6%, and 27.1% on average, respectively. This proves that this study can effectively handle the complex and non-linear patterns in the second-level wind signals along the high-speed railway and improve the prediction accuracy and adaptability.
-
表 1 模型参数设置
Table 1. Model parameter settings
实验方法 初始参数设置 ARIMA 自回归阶数:11;差分阶数:2;移动平均阶数:1 SVR 核函数:RBF;正则化参数:10;核系数:0.1 XGBOOST 学习率:0.01;最大深度:5;树数量:200 LSTM 隐藏层数:3;隐藏单元数:128;激活函数:tanh函数;迭代次数:100;Dropout:0.2 1D-CNN 卷积核数量:64;卷积核大小:5;池化层:2;全连接单元:32 EEMD-LSTM EEMD-集合数量:100;噪声强度:0.05;分解层数:8;LSTM-隐藏层数:3;隐藏单元数:128;激活函数:tanh;迭代次数:100;Dropout:0.2 PCA-LSTM PCA-主成分保留方差:95%;LSTM-隐藏层数:3;隐藏单元数:128;激活函数:tanh函数;迭代次数:100;Dropout:0.2 MW-LSTM MW-小波函数:db4;分解层数:3层:LSTM-隐藏层数:3;隐藏单元数:128;激活函数:tanh函数;迭代次数:100;Dropout:0.2 VMD-GA-BP VMD-模态数:8;惩罚因子:2 000;GA种群大小:50;迭代次数:100;BP网络层:64 VMD-PSO-BiLSTM VMD模态数:7;PSO种群大小:30;迭代次数:50;BiLSTM单元数:64 DEEPER 隐藏层大小:64;层数:2;初始学习率:0.001;训练轮数:100 WINDFORMER 多头注意力的头数:4;隐藏单元数:256;初始学习率:0.001 CEEMDAN-WOA-SVR CEEMDAN分解层数:8;WOA种群大小:20;迭代次数:50;核函数:RBF;正则化参数:10;核系数:0.1 Fu-Attention- DeepESN DeepESN-储备池规模:300;层数:3;频谱半径0.9;泄露率:0.3;激活函数:tanh函数;多头注意力的头数:8;隐藏单元数:256;初始学习率:0.001 MT-RFVMD-OD-Fu- Attention-DeepESN本文方法 RF-VMD: 分解层数:7;DeepESN-储备池规模:300;层数:3;频谱半径0.9;泄露率:0.3;激活函数:tanh函数;多头注意力的头数:8;隐藏单元数:256;初始学习率:0.001 表 2 模型预测结果对比
Table 2. Comparison of model prediction results
实验方法 K1005站点 K1066站点 K1245站点 MAPE/% RMSE PWSE MAPE/% RMSE PWSE MAPE/% RMSE PWSE ARIMA 9.00 1.099 -0.682 7.32 1.150 -0.738 7.07 1.047 -0.636 SVR 8.56 0.936 2.008 7.07 1.102 -0.650 6.46 0.967 -0.431 XGBOOST 8.75 1.064 1.616 7.39 1.136 0.422 6.54 0.968 0.592 LSTM 8.54 0.872 -0.479 7.08 1.082 -0.534 7.92 0.827 -0.340 1D-CNN 8.95 0.893 -0.945 7.44 1.126 -0.862 6.56 0.906 -0.460 EEMD-LSTM 5.69 0.671 -0.258 3.20 0.628 -0.037 4.48 0.689 0.261 PCA-LSTM 7.07 0.777 -0.861 7.10 0.856 -0.795 4.71 0.714 -0.628 MW-LSTM 4.67 0.501 0.095 5.23 0.826 -0.441 3.33 0.522 -0.266 VMD-GA-BP 4.46 0.571 0.589 4.17 0.625 0.078 3.85 0.548 0.384 VMD-PSO-BiLSTM 4.44 0.555 -0.154 4.81 0.726 0.267 3.93 0.534 -0.219 DEEPER 6.71 0.719 0.578 5.33 0.840 0.282 4.11 0.596 0.354 WINDFORMER 5.71 0.630 0.232 4.43 0.680 0.044 3.16 0.486 0.351 CEEMDAN-WOA-SVR 3.38 0.796 -0.109 5.22 0.823 0.438 3.73 0.516 0.479 Fu-Attention-DeepESN 4.36 0.452 0.094 2.96 0.494 0.235 2.78 0.416 0.206 本文方法 2.76 0.234 0.008 2.99 0.306 0.034 2.27 0.282 0.021 表 3 消融实验评价指标
Table 3. Evaluation indices of ablation experiments
实验方法 K1005站点 K1066站点 K1245站点 MAPE/% RMSE PWSE MAPE/% RMSE PWSE MAPE/% RMSE PWSE MT-RFVMD-Fu-Attention-DeepESN 2.25 0.334 0.063 2.98 0.378 0.134 2.67 0.309 0.097 MT-VMD-OD-Fu-Attention-DeepESN 1.65 0.246 0.019 2.38 0.268 0.023 1.98 0.278 0.065 RFVMD-OD-Fu-Attention-DeepESN 2.87 0.423 -0.057 3.05 0.556 -0.103 3.01 0.368 -0.091 MT-RFVMD-OD-Fu-DeepESN 3.54 0.389 0.083 3.82 0.491 0.071 2.61 0.475 0.011 本文方法 2.76 0.234 0.008 2.99 0.306 0.034 2.27 0.282 0.021 -
[1] 李晓健, 陈雍君, 邱实, 等. 复杂地区铁路工程建设风险知识图谱的建立与分析方法[J]. 铁道学报, 2025, 47(5): 187-196. doi: 10.3969/j.issn.1001-8360.2025.05.020LI Xiao-jian, CHEN Yong-jun, QIU Shi, et al. Establishment and analysis method for risk knowledge graph of railway construction in complex areas[J]. Journal of the China Railway Society, 2025, 47(5): 187-196. doi: 10.3969/j.issn.1001-8360.2025.05.020 [2] DELAUNAY D, CLÉON L M, SACRÉ C, et al. Designing a wind alarm system for the TGV-Méditerranée[C]//SMITH D A, LETCHFORD C W. Proceedings of the 11th International Conference on Wind Engineering. Lubbock: Texas Tech University, 2005: 1-8. [3] HOPPMANN U, KOENIG S, TIELKES T, et al. A short-term strong wind prediction model for railway application: design and verification[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(10): 1127-1134. [4] 包云, 王瑞, 王彤. 欧洲对高速铁路横风的研究[J]. 中国铁路, 2015(3): 8-11. doi: 10.3969/j.issn.1001-683X.2015.03.002BAO Yun, WANG Rui, WANG Tong. Study on crosswind of high-speed railway in Europe[J]. Chinese Railways, 2015(3): 8-11. doi: 10.3969/j.issn.1001-683X.2015.03.002 [5] 温旭军. 高速铁路大风预警方法及预警系统的研究[D]. 北京: 北京交通大学, 2023.WEN Xu-jun. Research on early warning method and early warning system of high-speed railway gale[D]. Beijing: Beijing Jiaotong University, 2023. [6] BOUZGOU H, BENOUDJIT N. Multiple architecture system for wind speed prediction[J]. Applied Energy, 2011, 88(7): 2463-2471. [7] PEARRE N S, SWAN L G. Statistical approach for improved wind speed forecasting for wind power production[J]. Sustainable Energy Technologies and Assessments, 2018, 27: 180-191. [8] MEMARZADEH G, KEYNIA F. A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets[J]. Energy Conversion and Management, 2020, 213: 112824. [9] JASEENA K U, KOVOOR B C. Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks[J]. Energy Conversion and Management, 2021, 234: 113944. [10] FANTINI D G, SILVA R N, SIQUEIRA M B B, et al. Wind speed short-term prediction using recurrent neural network GRU model and stationary wavelet transform GRU hybrid model[J]. Energy Conversion and Management, 2024, 308: 118333. [11] JOSEPH L P, DEO R C, PRASAD R, et al. Near real-time wind speed forecast model with bidirectional LSTM networks[J]. Renewable Energy, 2023, 204: 39-58. doi: 10.3969/j.issn.1671-5292.2023.01.006 [12] MA Z R, CHEN H W, WANG J J, et al. Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction[J]. Energy Conversion and Management, 2020, 205: 112345. [13] DUAN J K, ZUO H C, BAI Y L, et al. Short-term wind speed forecasting using recurrent neural networks with error correction[J]. Energy, 2021, 217: 119397. [14] ZHANG S H, WANG C, LIAO P, et al. Wind speed forecasting based on model selection, fuzzy cluster, and multi-objective algorithm and wind energy simulation by Betz's Theory[J]. Expert Systems with Applications, 2022, 193: 116509. [15] LV S X, WANG L. Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model[J]. Energy, 2023, 263: 126100. [16] SHANG Z H, CHEN Y, CHEN Y H, et al. Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism[J]. Expert Systems with Applications, 2023, 223: 119878. [17] YAMAGUCHI A, ISHIHARA T. Maximum instantaneous wind speed forecasting and performance evaluation by using numerical weather prediction and on-site measurement[J]. Atmosphere, 2021, 12(3): 316. [18] 金曈宇, 叶小岭, 熊雄, 等. 高铁沿线大风预测技术研究[J]. 铁道科学与工程学报, 2021, 18(3): 615-622.JIN Tong-yu, YE Xiao-ling, XIONG Xiong, et al. Research on prediction technology of high wind along high-speed railway[J]. Journal of Railway Science and Engineering, 2021, 18(3): 615-622. [19] 何旭辉, 段泉成, 严磊. 基于DeepAR的短期风速概率预测[J]. 铁道学报, 2023, 45(7): 152-160. doi: 10.3969/j.issn.1001-8360.2023.07.018HE Xu-hui, DUAN Quan-cheng, YAN Lei. Short-term wind speed probabilistic prediction model using DeepAR[J]. Journal of the China Railway Society, 2023, 45(7): 152-160. doi: 10.3969/j.issn.1001-8360.2023.07.018 [20] LIU C, HE S B, LIU H Y, et al. WindTrans: Transformer-based wind speed forecasting method for high-speed railway[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 4947-4963. [21] 江星星, 宋秋昱, 朱忠奎, 等. 基于收敛趋势变分模式分解的齿轮箱故障诊断方法[J]. 交通运输工程学报, 2022, 22(1): 177-189. doi: 10.19818/j.cnki.1671-1637.2022.01.015JIANG Xing-xing, SONG Qiu-yu, ZHU Zhong-kui, et al. Gearbox fault diagnosis method based on convergent trend-guided variational mode decomposition[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 177-189. doi: 10.19818/j.cnki.1671-1637.2022.01.015 [22] ZHANG Y G, PAN G F, CHEN B, et al. Short-term wind speed prediction model based on GA-ANN improved by VMD[J]. Renewable Energy, 2020, 156: 1373-1388. [23] LI Y T, WU Z Y, SU Y. Adaptive short-term wind power forecasting with concept drifts[J]. Renewable Energy, 2023, 217: 119146. [24] YANG L X, ZHANG Z J. A deep attention convolutional recurrent network assisted by K-shape clustering and enhanced memory for short term wind speed predictions[J]. IEEE Transactions on Sustainable Energy, 2022, 13(2): 856-867. [25] CHEN X, YE X L, XIONG X, et al. Improving the accuracy of wind speed spatial interpolation: A pre-processing algorithm for wind speed dynamic time warping interpolation[J]. Energy, 2024, 295: 130876. [26] EL AMOURI H, LAMPERT T, GANÇARSKI P, et al. Constrained DTW preserving shapelets for explainable time-series clustering[J]. Pattern Recognition, 2023, 143: 109804. [27] WANG G, SUN L F, WANG A J, et al. Lithium battery remaining useful life prediction using VMD fusion with attention mechanism and TCN[J]. Journal of Energy Storage, 2024, 93: 112330. [28] LI Z X, LI L W, CHEN J, et al. A multi-head attention mechanism aided hybrid network for identifying batteries' state of charge[J]. Energy, 2024, 286: 129504. [29] WANG B W, LUN S X, LI M, et al. Echo state network structure optimization algorithm based on correlation analysis[J]. Applied Soft Computing, 2024, 152: 111214. [30] GAO R B, LI R L, HU M H, et al. Dynamic ensemble deep echo state network for significant wave height forecasting[J]. Applied Energy, 2023, 329: 120261. [31] MA Q L, ZHENG Z J, ZHUANG W Q, et al. Echo Memory-augmented Network for time series classification[J]. Neural Networks, 2021, 133: 177-192. [32] 曲栩, 甘锐, 安博成, 等. 基于广义时空图卷积网络的交通群体运动态势预测[J]. 交通运输工程学报, 2022, 22(3): 79-88. doi: 10.19818/j.cnki.1671-1637.2022.03.006QU Xu, GAN Rui, AN Bo-cheng, et al. Prediction of traffic swarm movement situation based on generalized spatio-temporal graph convolution network[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 79-88. doi: 10.19818/j.cnki.1671-1637.2022.03.006 [33] VY V, LEE Y, BAK J, et al. Damage localization using acoustic emission sensors via convolutional neural network and continuous wavelet transform[J]. Mechanical Systems and Signal Processing, 2023, 204: 110831. [34] YAN Y, WANG X R, REN F, et al. Wind speed prediction using a hybrid model of EEMD and LSTM considering seasonal features[J]. Energy Reports, 2022, 8: 8965-8980. [35] GENG D W, ZHANG H F, WU H Y. Short-term wind speed prediction based on principal component analysis and LSTM[J]. Applied Sciences, 2020, 10(13): 4416. [36] YU C J, LI Y L, CHEN Q, et al. Matrix-based wavelet transformation embedded in recurrent neural networks for wind speed prediction[J]. Applied Energy, 2022, 324: 119692. [37] LI J L, SONG Z H, WANG X F, et al. A novel offshore wind farm typhoon wind speed prediction model based on PSO-Bi-LSTM improved by VMD[J]. Energy, 2022, 251: 123848. -
下载: