留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内河船舶实际二氧化碳与大气污染物排放特征

熊宇祺 范爱龙 严俊辉 张永波

熊宇祺, 范爱龙, 严俊辉, 张永波. 内河船舶实际二氧化碳与大气污染物排放特征[J]. 交通运输工程学报, 2025, 25(3): 393-406. doi: 10.19818/j.cnki.1671-1637.2025.03.026
引用本文: 熊宇祺, 范爱龙, 严俊辉, 张永波. 内河船舶实际二氧化碳与大气污染物排放特征[J]. 交通运输工程学报, 2025, 25(3): 393-406. doi: 10.19818/j.cnki.1671-1637.2025.03.026
XIONG Yu-qi, FAN Ai-long, YAN Jun-hui, ZHANG Yong-bo. Real-world carbon dioxide and atmospheric pollutant emission characteristics of inland waterway ships[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 393-406. doi: 10.19818/j.cnki.1671-1637.2025.03.026
Citation: XIONG Yu-qi, FAN Ai-long, YAN Jun-hui, ZHANG Yong-bo. Real-world carbon dioxide and atmospheric pollutant emission characteristics of inland waterway ships[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 393-406. doi: 10.19818/j.cnki.1671-1637.2025.03.026

内河船舶实际二氧化碳与大气污染物排放特征

doi: 10.19818/j.cnki.1671-1637.2025.03.026
基金项目: 

国家重点研发计划项目 2022YFB4300803

水路交通控制全国重点实验室开放课题 QZ 2022-Y015

绿色智能内河船舶创新专项 MC-202002-C01

科技部中国-克罗地亚科技合作委员会第10届例会人员交流项目 10-28

详细信息
    作者简介:

    熊宇祺(1998-),男,湖北黄冈人,复旦大学工学博士研究生,从事船舶排放控制及大气污染数值模拟研究

    通讯作者:

    范爱龙(1990-),男,安徽巢湖人,武汉理工大学特设教授,工学博士

  • 中图分类号: U698

Real-world carbon dioxide and atmospheric pollutant emission characteristics of inland waterway ships

Funds: 

National Key R&D Program of China 2022YFB4300803

Open Project of State Key Laboratory of Maritime Technology and Safety QZ 2022-Y015

Green Intelligent Inland Ship Innovation Program MC-202002-C01

Exchange Program of the 10th China-Croatia Science and Technology Cooperation Committee of the Ministry of Science and Technology 10-28

More Information
Article Text (Baidu Translation)
  • 摘要: 基于携式排放测试系统(PEMS)、GPS、轴功率仪、温湿度计等仪器,构建船舶排放监测系统,探究了内河船舶实际二氧化碳(CO2)与大气污染物排放特征,实现对船舶营运过程中能耗数据和排放数据的高精度测量;基于所建立的船舶排放监测系统,开展实船测量试验,以内河3种主要类型的船舶为测试对象,收集案例船舶在实际运营过程中的能耗和排放数据;开展了船舶主机稳定工况试验,测量了主机负荷在25%、50%和75%下的稳定能耗和排放;基于采集的实船数据,利用碳平衡法计算船舶排放中气体的排放因子,并结合主机功率等数据,分析案例船舶实际CO2和大气污染物的排放特征。分析结果表明:船舶在实际营运过程中大部分时间主机负荷处于50%以下,而这种长时间的低负荷航行状态是造成CO2和大气污染物排放增加的主要原因;船舶在进港和离港时一氧化碳(CO)和CO2基于功率的排放因子会高于巡航和机动;船舶主机处于稳定状态时,CO2和大气污染物的排放与主机负荷和燃料类型显著相关,且随着主机负荷的增大而减小;而当主机处于相对较高且稳定负荷状态时,氮氧化物(NOx)的排放会减少。

     

  • 图  1  监测系统框架

    Figure  1.  Framework of measurement system

    图  2  能耗监测设备

    Figure  2.  Energy consumption measurement devices

    图  3  排放监测

    Figure  3.  Emission measurement

    图  4  案例船舶

    Figure  4.  Target ships

    图  5  案例船舶航行路线

    Figure  5.  Navigation routes of target ships

    图  6  试验流程

    Figure  6.  Experimental flow

    图  7  案例船舶主机负荷分布

    Figure  7.  Main engine load distributions of target ships

    图  8  集装箱船在航行过程中的排放物浓度

    Figure  8.  Emission concentrations of container ship during navigation

    图  9  液货船在航行过程中的排放物浓度

    Figure  9.  Emission concentrations of liquid cargo ship during navigation

    图  10  散货船在航行过程中的排放物浓度

    Figure  10.  Emission concentrations of cargo ship during navigation

    图  11  案例船舶低负荷特性

    Figure  11.  Low-load characteristics of target ships

    图  12  船舶不同低负荷点的排放

    Figure  12.  Emissions from different low-load points of ships

    图  13  航速与排放率的关系

    Figure  13.  Connections of ship speed and emissions

    表  1  Testo350相关参数

    Table  1.   Parameters of Testo350

    成分 测量量程 分辨率 精确度
    浓度 O2/% 0~25 0.01 ±0.2
    CO/10-6 0~3 000 1 ±10
    NO/10-6 0~3 000 1 ±10
    NO2/10-6 0~500 0.1 ±5
    SO2/10-6 0~3 000 1 ±5
    CO2/% 0~40 0.1 ±0.5
    下载: 导出CSV

    表  2  案例船舶主要参数

    Table  2.   Main parameters of target ships

    参数 案例船1
    (集装箱船)
    案例船2
    (液货船)
    案例船3
    (散货船)
    总长/m 118.9 88.0 52.0
    型宽/m 21.6 16.0 11.0
    额定功率/kW 1 000×2 600×2 385×2
    额定转速/(r·min-1) 750 750 1 200
    燃料类型 柴油/液化天然气 柴油 柴油
    发动机排放标准类型[27] 国二 国二 国一
    建造年份 2020 2022 2012
    下载: 导出CSV

    表  3  集装箱船基于功率的排放因子

    Table  3.   Power-based emission factors of container ship g·(kW·h)-1

    典型工况 CO NOx SO2 CO2
    离港 6.22 4.96 5.09 646.16
    巡航 6.93 7.14 1.74 534.07
    机动 4.08 7.75 1.70 525.04
    进港 4.65 5.46 2.24 624.77
    下载: 导出CSV

    表  4  液货船基于功率的排放因子

    Table  4.   Power-based emission factors of liquid cargo ship  g·(kW·h)-1

    典型工况 CO NOx SO2 CO2
    离港 1.12 7.47 0.80 329.75
    巡航 0.17 5.12 0.86 231.32
    机动 0.18 6.25 1.15 300.22
    进港 0.26 8.53 1.73 412.25
    下载: 导出CSV

    表  5  散货船基于功率的排放因子

    Table  5.   Power-based emission factors of cargo ship  g·(kW·h)-1

    典型工况 CO NOx SO2 CO2
    离港 4.84 9.39 0.05 864.95
    巡航 0.48 10.99 0.01 643.54
    机动 1.03 12.09 0.46 715.19
    进港 5.45 16.18 0.01 998.79
    过闸 17.13 16.20 0.02 1 075.37
    下载: 导出CSV

    表  6  E3循环试验测量的工况点

    Table  6.   Operating points measured by E3 cycle test

    功率百分比/ % 转速百分比/ % 功率(kW)/转速(r·min-1)
    集装箱船 液货船 散货船
    25 63 250/473 150/473 96/756
    50 80 500/600 300/600 193/960
    75 91 750/683 450/683 289/1 092
    注:表中加权系数是通过名义加权因数修正所得,3个工况点(主机负荷在25%、50%、75%)的加权系数分别为0.187 5、0.187 5、0.625 0。
    下载: 导出CSV

    表  7  集装箱船稳定工况的排放

    Table  7.   Emissions at stable working condition of container ship

    工况点 CO浓度/ (mg·m-3) CO2浓度/ (g·m-3) NOx浓度/ (mg·m-3) CO基于功率排放因子/ [g·(kW·h)-1] CO2基于功率排放因子/ [g·(kW·h)-1] NOx基于功率排放因子/ [g·(kW·h)-1]
    25% 225.00 155.18 2 216.65 0.84 615.88 10.61
    50% 158.75 143.39 1 974.28 0.47 586.41 9.78
    75% 96.25 119.82 1 671.55 0.35 548.58 8.01
    限值 0.46 568.29 8.83
    下载: 导出CSV

    表  8  液货船稳定工况的排放

    Table  8.   Emissions at stable working condition of liquid cargo ship

    工况点 CO浓度/ (mg·m-3) CO2浓度/ (g·m-3) NOx浓度/ (mg·m-3) CO基于功率排放因子/ [g·(kW·h)-1] CO2基于功率排放因子/ [g·(kW·h)-1] NOx基于功率排放因子/ [g·(kW·h)-1]
    25% 65.63 113.93 1 709.69 0.26 444.36 8.58
    50% 59.50 123.75 2 207.83 0.14 295.34 6.75
    75% 44.38 127.68 2 253.68 0.10 278.28 6.22
    限值 0.14 312.62 6.76
    下载: 导出CSV
  • [1] 彭传圣. 我国航运绿色发展现状与趋势[J]. 中国海事, 2022(6): 19-23.

    PENG Chuan-sheng. Current situation and trend of green shipping development in China[J]. China Maritime Safety, 2022(6): 19-23.
    [2] LI X, FAN Y L, WU L. CO2 emissions and expansion of railway, road, airline and in-land waterway networks over the 1985-2013 period in China: a time series analysis[J]. Transportation Research Part D: Transport and Environment, 2017, 57: 130-140. http://www.sciencedirect.com/science/article/pii/S1361920917303243
    [3] 范爱龙, 熊宇祺, 贺亚鹏, 等. 长江船舶替代燃料动力全生命周期碳足迹研究[J]. 船舶工程, 2022, 44(12): 70-75, 81.

    FAN Ai-long, XIONG Yu-qi, HE Ya-peng, et al. Lifecycle carbon footprint study for alternative fuel power of Yangtze River ships[J]. Ship Engineering, 2022, 44(12): 70-75, 81.
    [4] HUANG H X, ZHOU C H, HUANG L, et al. Inland ship emission inventory and its impact on air quality over the middle Yangtze River, China[J]. Science of the Total Environment, 2022, 843: 156770.
    [5] 余丽, 胡佳乐, 李发清. 船舶排放控制区实施绩效评价指标研究[J]. 中国船检, 2021(11): 68-72.

    YU Li, HU Jia-le, LI Fa-qing. Research on performance evaluation index of ship emission control areas[J]. China Ship Survey, 2021(11): 68-72.
    [6] 刘学之, 朱乾坤, 孙鑫, 等. 欧盟碳市场MRV制度体系及其对中国的启示[J]. 中国科技论坛, 2018(8): 164-173.

    LIU Xue-zhi, ZHU Qian-kun, SUN Xin, et al. Study on EU ETS MRV system and the enlightenments for China[J]. Forum on Science and Technology in China, 2018(8): 164-173.
    [7] 船舶发动机排气污染物排放限值及测量方法(中国第一、二阶段)实施指南(Rev. 1)[J]. 船舶标准化工程师, 2018, 51(6): 12.

    Limits and measurement methods for exhaust pollutants from marine engines (China Ⅰ, Ⅱ)[J]. Ship Standardization Engineer, 2018, 51(6): 12.
    [8] 魏安, 韩雪峰, 吕代臣, 等. 远洋船舶NOx排放量的测量[J]. 重庆交通大学学报(自然科学版), 2011, 30(1): 166-170.

    WEI An, HANXue-feng, LYU Dai-chen, et al. Measuring of NOx discharge on ocean-going vessels[J]. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(1): 166-170.
    [9] FAN A L, YAN J H, XIONG Y Q, et al. Characteristics of real-world ship energy consumption and emissions based on onboard testing[J]. Marine Pollution Bulletin, 2023, 194: 115411. doi: 10.1016/j.marpolbul.2023.115411
    [10] 唐远贽, 楼狄明, 张允华, 等. 基于工况变化的港作拖轮排放特性[J]. 中国环境科学, 2021, 41(5): 1995-2003.

    TANG Yuan-zhi, LOU Di-ming, ZHANG Yun-hua, et al. Emission characteristics of port tugboat based on working conditions[J]. China Environmental Science, 2021, 41(5): 1995-2003.
    [11] ZHANG Y, ZHOU R, CHEN J H, et al. The effectiveness of emission control policies in regulating air pollution over coastal ports of China: spatiotemporal variations of NO2 and SO2[J]. Ocean and Coastal Management, 2022, 219: 106064. http://www.sciencedirect.com/science/article/pii/S0964569122000394
    [12] 向蜀霞, 姚婷婷, 彭勇平, 等. 港作拖轮实船尾气在线监测对排放因子的初步探讨[C]//曲久辉. 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(一). 北京: 环境工程出版社, 2021: 391-394.

    XIANG Shu-xia, YAO Ting-ting, PENG Yong-ping, et al. Preliminary discussion on on-line monitoring of exhaust emission factors of port tugboats[C]//QU Jiu-hui. Proceedings of the Sub-forum on Environmental Engineering Technology Innovation and Application. Beijing: Environmental Engineering, 2021: 391-394.
    [13] 付明亮, 刘欢, 贺克斌. 实际工况下内河航行船舶NOx排放测试与分析[J]. 环境工程学报, 2018, 12(4): 1065-1070.

    FU Ming-liang, LIU Huan, HE Ke-bin. Emission test and analysis of NO. from inland ship under real-world operating modes[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1065-1070.
    [14] 邱浩, 刘丹彤, 吴杨周, 等. 结合在线监测和自动识别系统分析东海沿岸船舶排放特征[J]. 环境科学, 2022, 43(10): 4338-4347.

    QIU Hao, LIU Dan-tong, WU Yang-zhou, et al. Investigating the pollutants of marine shipping emissions along the East China Sea by combining in-situ measurements and automatic identification system[J]. Environmental Science, 2022, 43(10): 4338-4347.
    [15] 宋亚楠. 内河和近海船舶排放特性及排放清单研究[D]. 北京: 北京理工大学, 2015.

    SONG Ya-nan. Research of emission inventory and emission research of emission inventory and emission character of inland and offshore ships[D]. Beijing: Beijing Institute of Technology, 2015.
    [16] PENG Z H, GE Y S, TAN J W, et al. Emissions from several in-use ships tested by portable emission measurement system[J]. Ocean Engineering, 2016, 116: 260-267. http://www.keyanzhidian.com/doc/detail?id=2027580323
    [17] CHU-VAN T, RISTOVSKI Z, POURKHESALIAN A M, et al. On-board measurements of particle and gaseous emissions from a large cargo vessel at different operating conditions[J]. Environmental Pollution, 2018, 237: 832-841. http://www.gaef.de/EAC2017/EAC2017abstracts/SPS6/SPS6N3fa.pdf
    [18] WANG H Y, HU Q Y, HUANG C, et al. Quantification of gaseous and particulate emission factors from a cargo ship on the Huangpu River[J]. Journal of Marine Science and Engineering, 2023, 11(8): 1580. http://www.keyanzhidian.com/doc/detail?id=2074636763
    [19] YANG L, ZHANG Q J, ZHANG Y J, et al. Real-world emission characteristics of an ocean-going vessel through long sailing measurement[J]. Science of the Total Environment, 2022, 810: 152276. http://pubmed.ncbi.nlm.nih.gov/34902419/
    [20] SMIT R, CHU-VAN T, SARA K, et al. Comparing an energy-based ship emissions model with AIS and on-board emissions testing[J]. Atmospheric Environment: X, 2022, 16: 100192. http://www.sciencedirect.com/science/article/pii/S2590162122000466
    [21] 石利勇. 基于船舶柴油机监测数据的能耗研究[D]. 重庆: 重庆交通大学, 2021.

    SHI Li-yong. Research on energy consumption based on monitoring data of marine diesel engine[D]. Chongqing: Chongqing Jiaotong University, 2021.
    [22] 杨彬彬, 贾寿珂, 巩倞妤, 等. 内燃机燃油消耗率检测方法综述[J]. 小型内燃机与车辆技术, 2021, 50(1): 85-90.

    YANG Bin-bin, JIA Shou-ke, GONG Jing-yu, et al. Review of fuel consumption measurement methods for internal combustion engines[J]. Small Internal Combustion Engine and Vehicle Technique, 2021, 50(1): 85-90.
    [23] 冯永超, 胡勇. 含湿量和CO对3种SO2监测方法的影响研究[J]. 环境科学与技术, 2016, 39(增1): 203-206.

    FENG Yong-chao, HU Yong. Effect of humidity and CO on the fast analysis of SO2 by three different methods[J]. Environmental Science and Technology, 2016, 39(S1): 203-206.
    [24] 张雅楠, 刘灿, 张磊, 等. 基于NDIR技术的红外CO2气体传感器研究[J]. 仪表技术与传感器, 2023(9): 23-28.

    ZHANG Ya-nan, LIU Can, ZHANG Lei, et al. Research on infrared CO2 gas sensor based on NDIR technology[J]. Instrument Technique and Sensor, 2023 (9): 23-28.
    [25] 冀树德, 贾桢, 张伟, 等. 碳平衡法在柴油机排放测试中的应用[J]. 小型内燃机与摩托车, 2011, 40(3): 63-66.

    JI Shu-de, JIA Zhen, ZHANG Wei, et al. The application of carbon balance method in diesel emission[J]. Small Internal Combustion Engine and Motorcycle, 2011, 40(3): 63-66.
    [26] 石晓川, 孙光晓, 黄珍, 等. 机械泵船舶发动机路谱采集方案的研究[J]. 内燃机与配件, 2022(9): 30-32.

    SHI Xiao-chuan, SUN Guang-xiao, HUANG Zhen, et al. Research of marine engine road spectrum acquisition scheme[J]. Internal Combustion Engine and Parts, 2022(9): 30-32.
    [27] 税绍强. 船机废气排放标准与控制[J]. 内燃机与配件, 2019(14): 188-190.

    SHUI Shao-qiang. Emission standards and control of ship engine exhaust gas internal[J]. Combustion Engine and Parts, 2019(14): 188-190.
    [28] 王钰豪, 刘建国, 徐亮, 等. 主成分分析在温室气体时序红外光谱处理中的应用研究[J]. 光谱学与光谱分析, 2023, 43(7): 2313-2318.

    WANG Yu-hao, LIU Jian-guo, XU Liang, et al. Application of principal component analysis in processing of time-resolved infrared spectra of greenhouse gases[J]. Spectroscopy and Spectral Analysis, 2023, 43(7): 2313-2318.
    [29] FAN A L, XIONG Y Q, YAN J H, et al. Microscopic characteristics and influencing factors of ship emissions based on onboard measurements[J]. Transportation Research Part D: Transport and Environment, 2024, 133: 104300. doi: 10.1016/j.trd.2024.104300
  • 加载中
图(13) / 表(8)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  71
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-14
  • 录用日期:  2025-03-12
  • 修回日期:  2024-12-21
  • 刊出日期:  2025-06-28

目录

    /

    返回文章
    返回