Real-world carbon dioxide and atmospheric pollutant emission characteristics of inland waterway ships
-
摘要: 基于携式排放测试系统(PEMS)、GPS、轴功率仪、温湿度计等仪器,构建船舶排放监测系统,探究了内河船舶实际二氧化碳(CO2)与大气污染物排放特征,实现对船舶营运过程中能耗数据和排放数据的高精度测量;基于所建立的船舶排放监测系统,开展实船测量试验,以内河3种主要类型的船舶为测试对象,收集案例船舶在实际运营过程中的能耗和排放数据;开展了船舶主机稳定工况试验,测量了主机负荷在25%、50%和75%下的稳定能耗和排放;基于采集的实船数据,利用碳平衡法计算船舶排放中气体的排放因子,并结合主机功率等数据,分析案例船舶实际CO2和大气污染物的排放特征。分析结果表明:船舶在实际营运过程中大部分时间主机负荷处于50%以下,而这种长时间的低负荷航行状态是造成CO2和大气污染物排放增加的主要原因;船舶在进港和离港时一氧化碳(CO)和CO2基于功率的排放因子会高于巡航和机动;船舶主机处于稳定状态时,CO2和大气污染物的排放与主机负荷和燃料类型显著相关,且随着主机负荷的增大而减小;而当主机处于相对较高且稳定负荷状态时,氮氧化物(NOx)的排放会减少。Abstract: A ship emission measurement system was established using portable emissions measuring system (PEMS), global positioning system (GPS), shaft power meters, temperature and humidity sensors, and other instruments. The real-world characteristics of carbon dioxide (CO2) and air pollutant emission from inland ships were investigated, enabling high-precision measurement of energy consumption and emission data during ship operation. Based on the constructed system, onboard measurement tests were conducted on three major types of inland ships. The energy consumption and emission data of the ships during operation were collected. The steady-state tests of the main ship engine were performed at load conditions of 25%, 50%, and 75% to measure stable energy consumption and emissions. Based on the collected data, the emission factors of gases were analyzed with the carbon balance method. By combining the main engine power data, the characteristics of actual CO2 and air pollutant emissions from the ships were analyzed. Analysis results show that the main engine load of ships during operation is mostly below 50%. This prolonged low-load operation is the primary cause of increased CO2 and air pollutant emissions. The power-based emission factors for carbon oxide (CO) and CO2 are found to be higher during docking and departure than during cruising or maneuvering. When the main engine is in a steady state, the emission of CO2 and air pollutants is significantly related to engine load and fuel type and decreases with the higher engine load. At relatively high and stable engine load levels, nitrogen oxide (NOx) emissions are reduced.
-
表 1 Testo350相关参数
Table 1. Parameters of Testo350
成分 测量量程 分辨率 精确度 浓度 O2/% 0~25 0.01 ±0.2 CO/10-6 0~3 000 1 ±10 NO/10-6 0~3 000 1 ±10 NO2/10-6 0~500 0.1 ±5 SO2/10-6 0~3 000 1 ±5 CO2/% 0~40 0.1 ±0.5 表 2 案例船舶主要参数
Table 2. Main parameters of target ships
参数 案例船1
(集装箱船)案例船2
(液货船)案例船3
(散货船)总长/m 118.9 88.0 52.0 型宽/m 21.6 16.0 11.0 额定功率/kW 1 000×2 600×2 385×2 额定转速/(r·min-1) 750 750 1 200 燃料类型 柴油/液化天然气 柴油 柴油 发动机排放标准类型[27] 国二 国二 国一 建造年份 2020 2022 2012 表 3 集装箱船基于功率的排放因子
Table 3. Power-based emission factors of container ship
g·(kW·h)-1 典型工况 CO NOx SO2 CO2 离港 6.22 4.96 5.09 646.16 巡航 6.93 7.14 1.74 534.07 机动 4.08 7.75 1.70 525.04 进港 4.65 5.46 2.24 624.77 表 4 液货船基于功率的排放因子
Table 4. Power-based emission factors of liquid cargo ship
g·(kW·h)-1 典型工况 CO NOx SO2 CO2 离港 1.12 7.47 0.80 329.75 巡航 0.17 5.12 0.86 231.32 机动 0.18 6.25 1.15 300.22 进港 0.26 8.53 1.73 412.25 表 5 散货船基于功率的排放因子
Table 5. Power-based emission factors of cargo ship
g·(kW·h)-1 典型工况 CO NOx SO2 CO2 离港 4.84 9.39 0.05 864.95 巡航 0.48 10.99 0.01 643.54 机动 1.03 12.09 0.46 715.19 进港 5.45 16.18 0.01 998.79 过闸 17.13 16.20 0.02 1 075.37 表 6 E3循环试验测量的工况点
Table 6. Operating points measured by E3 cycle test
功率百分比/ % 转速百分比/ % 功率(kW)/转速(r·min-1) 集装箱船 液货船 散货船 25 63 250/473 150/473 96/756 50 80 500/600 300/600 193/960 75 91 750/683 450/683 289/1 092 注:表中加权系数是通过名义加权因数修正所得,3个工况点(主机负荷在25%、50%、75%)的加权系数分别为0.187 5、0.187 5、0.625 0。 表 7 集装箱船稳定工况的排放
Table 7. Emissions at stable working condition of container ship
工况点 CO浓度/ (mg·m-3) CO2浓度/ (g·m-3) NOx浓度/ (mg·m-3) CO基于功率排放因子/ [g·(kW·h)-1] CO2基于功率排放因子/ [g·(kW·h)-1] NOx基于功率排放因子/ [g·(kW·h)-1] 25% 225.00 155.18 2 216.65 0.84 615.88 10.61 50% 158.75 143.39 1 974.28 0.47 586.41 9.78 75% 96.25 119.82 1 671.55 0.35 548.58 8.01 限值 0.46 568.29 8.83 表 8 液货船稳定工况的排放
Table 8. Emissions at stable working condition of liquid cargo ship
工况点 CO浓度/ (mg·m-3) CO2浓度/ (g·m-3) NOx浓度/ (mg·m-3) CO基于功率排放因子/ [g·(kW·h)-1] CO2基于功率排放因子/ [g·(kW·h)-1] NOx基于功率排放因子/ [g·(kW·h)-1] 25% 65.63 113.93 1 709.69 0.26 444.36 8.58 50% 59.50 123.75 2 207.83 0.14 295.34 6.75 75% 44.38 127.68 2 253.68 0.10 278.28 6.22 限值 0.14 312.62 6.76 -
[1] 彭传圣. 我国航运绿色发展现状与趋势[J]. 中国海事, 2022(6): 19-23.PENG Chuan-sheng. Current situation and trend of green shipping development in China[J]. China Maritime Safety, 2022(6): 19-23. [2] LI X, FAN Y L, WU L. CO2 emissions and expansion of railway, road, airline and in-land waterway networks over the 1985-2013 period in China: a time series analysis[J]. Transportation Research Part D: Transport and Environment, 2017, 57: 130-140. http://www.sciencedirect.com/science/article/pii/S1361920917303243 [3] 范爱龙, 熊宇祺, 贺亚鹏, 等. 长江船舶替代燃料动力全生命周期碳足迹研究[J]. 船舶工程, 2022, 44(12): 70-75, 81.FAN Ai-long, XIONG Yu-qi, HE Ya-peng, et al. Lifecycle carbon footprint study for alternative fuel power of Yangtze River ships[J]. Ship Engineering, 2022, 44(12): 70-75, 81. [4] HUANG H X, ZHOU C H, HUANG L, et al. Inland ship emission inventory and its impact on air quality over the middle Yangtze River, China[J]. Science of the Total Environment, 2022, 843: 156770. [5] 余丽, 胡佳乐, 李发清. 船舶排放控制区实施绩效评价指标研究[J]. 中国船检, 2021(11): 68-72.YU Li, HU Jia-le, LI Fa-qing. Research on performance evaluation index of ship emission control areas[J]. China Ship Survey, 2021(11): 68-72. [6] 刘学之, 朱乾坤, 孙鑫, 等. 欧盟碳市场MRV制度体系及其对中国的启示[J]. 中国科技论坛, 2018(8): 164-173.LIU Xue-zhi, ZHU Qian-kun, SUN Xin, et al. Study on EU ETS MRV system and the enlightenments for China[J]. Forum on Science and Technology in China, 2018(8): 164-173. [7] 船舶发动机排气污染物排放限值及测量方法(中国第一、二阶段)实施指南(Rev. 1)[J]. 船舶标准化工程师, 2018, 51(6): 12.Limits and measurement methods for exhaust pollutants from marine engines (China Ⅰ, Ⅱ)[J]. Ship Standardization Engineer, 2018, 51(6): 12. [8] 魏安, 韩雪峰, 吕代臣, 等. 远洋船舶NOx排放量的测量[J]. 重庆交通大学学报(自然科学版), 2011, 30(1): 166-170.WEI An, HANXue-feng, LYU Dai-chen, et al. Measuring of NOx discharge on ocean-going vessels[J]. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(1): 166-170. [9] FAN A L, YAN J H, XIONG Y Q, et al. Characteristics of real-world ship energy consumption and emissions based on onboard testing[J]. Marine Pollution Bulletin, 2023, 194: 115411. doi: 10.1016/j.marpolbul.2023.115411 [10] 唐远贽, 楼狄明, 张允华, 等. 基于工况变化的港作拖轮排放特性[J]. 中国环境科学, 2021, 41(5): 1995-2003.TANG Yuan-zhi, LOU Di-ming, ZHANG Yun-hua, et al. Emission characteristics of port tugboat based on working conditions[J]. China Environmental Science, 2021, 41(5): 1995-2003. [11] ZHANG Y, ZHOU R, CHEN J H, et al. The effectiveness of emission control policies in regulating air pollution over coastal ports of China: spatiotemporal variations of NO2 and SO2[J]. Ocean and Coastal Management, 2022, 219: 106064. http://www.sciencedirect.com/science/article/pii/S0964569122000394 [12] 向蜀霞, 姚婷婷, 彭勇平, 等. 港作拖轮实船尾气在线监测对排放因子的初步探讨[C]//曲久辉. 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(一). 北京: 环境工程出版社, 2021: 391-394.XIANG Shu-xia, YAO Ting-ting, PENG Yong-ping, et al. Preliminary discussion on on-line monitoring of exhaust emission factors of port tugboats[C]//QU Jiu-hui. Proceedings of the Sub-forum on Environmental Engineering Technology Innovation and Application. Beijing: Environmental Engineering, 2021: 391-394. [13] 付明亮, 刘欢, 贺克斌. 实际工况下内河航行船舶NOx排放测试与分析[J]. 环境工程学报, 2018, 12(4): 1065-1070.FU Ming-liang, LIU Huan, HE Ke-bin. Emission test and analysis of NO. from inland ship under real-world operating modes[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1065-1070. [14] 邱浩, 刘丹彤, 吴杨周, 等. 结合在线监测和自动识别系统分析东海沿岸船舶排放特征[J]. 环境科学, 2022, 43(10): 4338-4347.QIU Hao, LIU Dan-tong, WU Yang-zhou, et al. Investigating the pollutants of marine shipping emissions along the East China Sea by combining in-situ measurements and automatic identification system[J]. Environmental Science, 2022, 43(10): 4338-4347. [15] 宋亚楠. 内河和近海船舶排放特性及排放清单研究[D]. 北京: 北京理工大学, 2015.SONG Ya-nan. Research of emission inventory and emission research of emission inventory and emission character of inland and offshore ships[D]. Beijing: Beijing Institute of Technology, 2015. [16] PENG Z H, GE Y S, TAN J W, et al. Emissions from several in-use ships tested by portable emission measurement system[J]. Ocean Engineering, 2016, 116: 260-267. http://www.keyanzhidian.com/doc/detail?id=2027580323 [17] CHU-VAN T, RISTOVSKI Z, POURKHESALIAN A M, et al. On-board measurements of particle and gaseous emissions from a large cargo vessel at different operating conditions[J]. Environmental Pollution, 2018, 237: 832-841. http://www.gaef.de/EAC2017/EAC2017abstracts/SPS6/SPS6N3fa.pdf [18] WANG H Y, HU Q Y, HUANG C, et al. Quantification of gaseous and particulate emission factors from a cargo ship on the Huangpu River[J]. Journal of Marine Science and Engineering, 2023, 11(8): 1580. http://www.keyanzhidian.com/doc/detail?id=2074636763 [19] YANG L, ZHANG Q J, ZHANG Y J, et al. Real-world emission characteristics of an ocean-going vessel through long sailing measurement[J]. Science of the Total Environment, 2022, 810: 152276. http://pubmed.ncbi.nlm.nih.gov/34902419/ [20] SMIT R, CHU-VAN T, SARA K, et al. Comparing an energy-based ship emissions model with AIS and on-board emissions testing[J]. Atmospheric Environment: X, 2022, 16: 100192. http://www.sciencedirect.com/science/article/pii/S2590162122000466 [21] 石利勇. 基于船舶柴油机监测数据的能耗研究[D]. 重庆: 重庆交通大学, 2021.SHI Li-yong. Research on energy consumption based on monitoring data of marine diesel engine[D]. Chongqing: Chongqing Jiaotong University, 2021. [22] 杨彬彬, 贾寿珂, 巩倞妤, 等. 内燃机燃油消耗率检测方法综述[J]. 小型内燃机与车辆技术, 2021, 50(1): 85-90.YANG Bin-bin, JIA Shou-ke, GONG Jing-yu, et al. Review of fuel consumption measurement methods for internal combustion engines[J]. Small Internal Combustion Engine and Vehicle Technique, 2021, 50(1): 85-90. [23] 冯永超, 胡勇. 含湿量和CO对3种SO2监测方法的影响研究[J]. 环境科学与技术, 2016, 39(增1): 203-206.FENG Yong-chao, HU Yong. Effect of humidity and CO on the fast analysis of SO2 by three different methods[J]. Environmental Science and Technology, 2016, 39(S1): 203-206. [24] 张雅楠, 刘灿, 张磊, 等. 基于NDIR技术的红外CO2气体传感器研究[J]. 仪表技术与传感器, 2023(9): 23-28.ZHANG Ya-nan, LIU Can, ZHANG Lei, et al. Research on infrared CO2 gas sensor based on NDIR technology[J]. Instrument Technique and Sensor, 2023 (9): 23-28. [25] 冀树德, 贾桢, 张伟, 等. 碳平衡法在柴油机排放测试中的应用[J]. 小型内燃机与摩托车, 2011, 40(3): 63-66.JI Shu-de, JIA Zhen, ZHANG Wei, et al. The application of carbon balance method in diesel emission[J]. Small Internal Combustion Engine and Motorcycle, 2011, 40(3): 63-66. [26] 石晓川, 孙光晓, 黄珍, 等. 机械泵船舶发动机路谱采集方案的研究[J]. 内燃机与配件, 2022(9): 30-32.SHI Xiao-chuan, SUN Guang-xiao, HUANG Zhen, et al. Research of marine engine road spectrum acquisition scheme[J]. Internal Combustion Engine and Parts, 2022(9): 30-32. [27] 税绍强. 船机废气排放标准与控制[J]. 内燃机与配件, 2019(14): 188-190.SHUI Shao-qiang. Emission standards and control of ship engine exhaust gas internal[J]. Combustion Engine and Parts, 2019(14): 188-190. [28] 王钰豪, 刘建国, 徐亮, 等. 主成分分析在温室气体时序红外光谱处理中的应用研究[J]. 光谱学与光谱分析, 2023, 43(7): 2313-2318.WANG Yu-hao, LIU Jian-guo, XU Liang, et al. Application of principal component analysis in processing of time-resolved infrared spectra of greenhouse gases[J]. Spectroscopy and Spectral Analysis, 2023, 43(7): 2313-2318. [29] FAN A L, XIONG Y Q, YAN J H, et al. Microscopic characteristics and influencing factors of ship emissions based on onboard measurements[J]. Transportation Research Part D: Transport and Environment, 2024, 133: 104300. doi: 10.1016/j.trd.2024.104300 -
下载: