Thawing behavior of frozen soil with high ice content under the action of high-power heating rod
-
摘要: 为探究高含冰量冻土在高温作用下的融化过程和水热变化,在负温环境箱内将干土、冰晶、水按配合比制成温度为-1.5 ℃,体积含冰量分别为20%、30%、40%和50%的4种冻土,然后利用自制的高功率加热棒对4种高含冰量冻土进行了预融对比试验,并通过传感器对冻土解冻过程中土体的温度和体积含水量进行实时监测,分析了加热棒作用下冻土温度和水分随时间的变化规律以及融化速率;通过现场试验验证了高功率加热棒用于预融深层高含冰量冻土的有效性和可靠性,并利用静力触探试验(CPT)判断了土体的融化范围。研究结果表明:加热棒作用下冻土的融化过程可以分为3个阶段,即冰水相变融化阶段、升温阶段和降温阶段;冻土融化由温度梯度和湿度梯度下共同作用引起的水热迁移主导,土体的最高温度随着含冰量和径向距离的增加逐渐减小;高温作用对径向为0~5 cm处的融土水分具有显著驱动作用,在加热时间内径向为5 cm处冻土的含水量在达到设计含水量之后逐渐减小;冻土在0~5 cm范围内的融化速率远大于其他范围且融化速率随着径向距离和含冰量增加而大幅减小;通过水分场判断冻土的融化时间和范围具有一定的滞后性,其会低估冻土的融化速度和范围,建议融化试验过程中通过温度响应时间来判断冻土冻融状态;通过CPT可以快速判断现场预融过程中冻土的融化范围。Abstract: To explore the thawing process and hydrothermal changes of frozen soil with high ice content under high-temperature conditions, four types of frozen soil with a temperature of -1.5 ℃ and ice volume content of 20%, 30%, 40%, and 50% were prepared in a sub-zero environmental chamber where dry soil, ice crystals, and water were mixed according to specific proportions. Subsequently, self-designed high-power heating rods were utilized to conduct pre-thawing comparative experiments on these four types of high-ice-content frozen soil, and sensors were employed to monitor real-time temperature and volumetric water content changes during the process. After that, under the action of heating rods, the variation patterns of frozen soil temperature and water content over time as well as the thawing rate of the frozen soil were analyzed. On this basis, field experiments were conducted to verify the efficacy and reliability of high-power heating rods for the pre-thawing of deep high-ice-content frozen soil. Additionally, the cone penetration test (CPT) was employed to determine the thawing range of the soil. Research results show that the thawing process of frozen soil can be divided into three stages under the influence of heating rods: the ice-water phase change thawing stage, the temperature rise stage, and the cooling stage. The thawing of frozen soil is primarily driven by hydrothermal migration jointly induced by temperature and moisture gradients, with the maximum soil temperature gradually decreasing as ice content and radial distance increase. High-temperature effects significantly drive moisture movement in thawed soil within the radial range of 0-5 cm, where the water content of frozen soil at 5 cm radial distance gradually decreases after reaching the designed water content during heating. The thawing rate of frozen soil within the 0-5 cm range is significantly higher than that in other ranges, and it decreases sharply with increasing radial distance and ice content. Determining thawing time and range through moisture fields shows certain hysteresis, underestimating the actual thawing speed and range. It is recommended to assess the freeze-thaw state of frozen soil during thawing experiments by monitoring the temperature response time. The CPT tests can be used to quickly determine the thawing range of frozen soil during field pre-thawing processes.
-
表 1 试验用土的基本物理力学参数
Table 1. Physical and mechanical parameters of test soil
土粒相对体积质量 干重度/(kN·m-3) 最佳含水率/% 液限/% 塑限/% 土壤类型 2.62 18.0 15.8 22.6 16.4 粉砂土 表 2 不同含冰量冻土的配合比
Table 2. Mixing ratios for frozen soil with different ice contents
编号 含冰量/% 试样质量/kg 干土质量/kg 水质量/kg 冰砂质量/kg 1 20 136.5 122.8 9.8 3.8 2 30 135.0 115.7 9.3 10.0 3 40 133.6 109.3 8.7 15.5 4 50 132.4 103.6 8.3 20.5 -
[1] LIEW M, JI X H, XIAO M, et al. Synthesis of physical processes of permafrost degradation and geophysical and geomechanical properties of permafrost[J]. Cold Regions Science and Technology, 2022, 198: 103522. doi: 10.1016/j.coldregions.2022.103522 [2] SUN Z H, LIU J K, HU T F, et al. A solar compression refrigeration apparatus to cool permafrost embankment[J]. Applied Thermal Engineering, 2023, 223: 120034. doi: 10.1016/j.applthermaleng.2023.120034 [3] 郝加前, 吉延峻, 何乃武, 等. 高温多年冻土区冻土地基预先融化技术研究现状及展望[J]. 冰川冻土, 2007, 29(4): 645-652.HAO Jia-qian, JI Yan-jun, HE Nai-wu, et al. Techniques for prethawing permafrost: review and prospect[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 645-652. [4] 汪双杰, 王佐, 袁堃, 等. 青藏公路多年冻土地区公路工程地质研究回顾与展望[J]. 中国公路学报, 2015, 28(12): 1-8, 32.WANG Shuang-jie, WANG Zuo, YUAN Kun, et al. Qinghai-Tibet highway engineering geology in permafrost regions: review and prospect[J]. China Journal of Highway and Transport, 2015, 28(12): 1-8, 32. [5] YAN Z R, ZHANG M Y, LAI Y M, et al. Countermeasures combined with thermosyphons against the thermal instability of high-grade highways in permafrost regions[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119047. doi: 10.1016/j.ijheatmasstransfer.2019.119047 [6] 金龙, 汪双杰, 穆柯, 等. 青藏公路热棒路基降温效能[J]. 交通运输工程学报, 2016, 16(4): 45-58.JIN Long, WANG Shuang-jie, MU Ke, et al. Cooling effect of thermosyphon subgrade for Qinghai-Tibet Highway[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 45-58. [7] TAI B W, WU Q B, ZHANG Z Q, et al. Cooling performance and deformation behavior of crushed-rock embankments on the Qinghai-Tibet railway in permafrost regions[J]. Engineering Geology, 2020, 265: 105453. doi: 10.1016/j.enggeo.2019.105453 [8] JIN M Y, SHANG K, YU Q H, et al. Study on working performance and cooling effect of a novel horizontal thermosyphon applied to expressway embankment in permafrost regions[J]. Cold Regions Science and Technology, 2024, 221: 104147. doi: 10.1016/j.coldregions.2024.104147 [9] XU K M, JIANG G L, CHEN J, et al. Thermal stability of permafrost under U-shaped crushed rock embankment of the Qinghai-Tibet Railway[J]. Advances in Climate Change Research, 2024, 15(1): 158-169. doi: 10.1016/j.accre.2023.12.005 [10] HUANG Y H, NIU F J, CHEN J B, et al. Express highway embankment distress and occurring probability in permafrost regions on the Qinghai-Tibet Plateau[J]. Transportation Geotechnics, 2023, 42: 101069. doi: 10.1016/j.trgeo.2023.101069 [11] CHAI M T, MU Y H, ZHANG J M, et al. Characteristics of asphalt pavement damage in degrading permafrost regions: case study of the Qinghai-Tibet highway, China[J]. Journal of Cold Regions Engineering, 2018, 32(2): 05018003. doi: 10.1061/(ASCE)CR.1943-5495.0000165 [12] YU W B, ZHANG T Q, LU Y, et al. Engineering risk analysis in cold regions: state of the art and perspectives[J]. Cold Regions Science and Technology, 2020, 171: 102963. doi: 10.1016/j.coldregions.2019.102963 [13] YUAN C, YU Q H, YOU Y H, et al. Deformation mechanism of an expressway embankment in warm and high ice content permafrost regions[J]. Applied Thermal Engineering, 2017, 121: 1032-1039. doi: 10.1016/j.applthermaleng.2017.04.128 [14] 包卫星, 刘亚伦, 毛雪松, 等. 高海拔多年冻土区砂石路面公路的路基温度场特征[J]. 交通运输工程学报, 2023, 23(4): 60-74. doi: 10.19818/j.cnki.1671-1637.2023.04.004BAO Wei-xing, LIU Ya-lun, MAO Xue-song, et al. Characteristics of subgrade temperature field of gravel road in high altitude permafrost region[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 60-74. doi: 10.19818/j.cnki.1671-1637.2023.04.004 [15] CUI P, GE Y B, LI S J, et al. Scientific challenges in disaster risk reduction for the Sichuan-Tibet railway[J]. Engineering Geology, 2022, 309: 106837. doi: 10.1016/j.enggeo.2022.106837 [16] MEI Q H, CHEN J, LIU Y Q, et al. Degradation of warm permafrost and talik formation on the Qinghai-Tibet Plateau in 2006-2021[J]. Advances in Climate Change Research, 2024, 15(2): 275-284. doi: 10.1016/j.accre.2024.03.009 [17] HJORT J, STRELETSKIY D, DORÉ G, et al. Impacts of permafrost degradation on infrastructure[J]. Nature Reviews Earth and Environment, 2022, 3: 24-38. doi: 10.1038/s43017-021-00247-8 [18] CYSEWSKI M H, SHUR Y. Pre-thawing: from mining to civil engineering; A historical perspective, cold regions impacts on research, design, and construction[C]//ASCE. Cold Regions Engineering 2009. Reston: ASCE, 2009: 22-31. [19] SVEEN S E, NGUYEN H T, SØRENSEN B R. Thaw penetration in frozen ground subjected to hydronic heating[J]. Journal of Cold Regions Engineering, 2017, 31(1): 04016008. doi: 10.1061/(ASCE)CR.1943-5495.0000117 [20] SVEEN S E, NGUYEN H T, SØRENSEN B R. Soil moisture variations in frozen ground subjected to hydronic heating[J]. Journal of Cold Regions Engineering, 2020, 34(4): 04020025. doi: 10.1061/(ASCE)CR.1943-5495.0000231 [21] JIA H L, WANG T, CHEN W H, et al. Microscopic mechanisms of microwave irradiation thawing frozen soil and potential application in excavation of frozen ground[J]. Cold Regions Science and Technology, 2021, 184: 103248. doi: 10.1016/j.coldregions.2021.103248 [22] LIU W B, CHEN L, YU W B, et al. Experimental study on thermal performance of quicklime (CaO) energy pile aimed to thaw the warm permafrost ground[J]. Applied Thermal Engineering, 2019, 156: 189-195. doi: 10.1016/j.applthermaleng.2019.04.056 [23] ZHU X W, TIAN B, QUAN L, et al. Thawing process of high-ice-content frozen soil subjected to saturated steam[J]. Applied Thermal Engineering, 2024, 247: 123122. doi: 10.1016/j.applthermaleng.2024.123122 [24] HERMANSSON Å, GUTHRIE W S. Numerical modeling of thaw penetration in frozen ground subject to low-intensity infrared heating[J]. Journal of Cold Regions Engineering, 2006, 20(1): 4-19. doi: 10.1061/(ASCE)0887-381X(2006)20:1(4) [25] OSWELL J M, GRAHAM M D. Thawing frozen ground: feld trials and analysis[J]. Journal of Cold Regions Engineering, 1987, 1(2): 76-88. doi: 10.1061/(ASCE)0887-381X(1987)1:2(76) [26] YOSHIKAWA K, OVERDUIN P P. Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors[J]. Cold Regions Science and Technology, 2005, 42(3): 250-256. doi: 10.1016/j.coldregions.2005.03.001 [27] ZHANG D, LI X, LI X K, et al. Experimental study on the influence of initial water saturation on segregation frost-heaving behavior in silty clay columns[J]. Applied Thermal Engineering, 2023, 234: 121236. doi: 10.1016/j.applthermaleng.2023.121236 [28] 李顺群, 王杏杏, 夏锦红, 等. 基于混合量热原理的冻土比热容测试方法[J]. 岩土工程学报, 2018, 40(9): 1684-1689.LI Shun-qun, WANG Xing-xing, XIA Jin-hong, et al. Test methods for specific heat capacity of frozen soil based on principles of mixing calorimetry[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1684-1689. [29] HINKEL K M, OUTCALT S I. Detection of heat-mass transfer regime transitions in the active layer using fractal geometric parameters[J]. Cold Regions Science and Technology, 1995, 23(4): 293-304. doi: 10.1016/0165-232X(95)00003-T [30] 刘红平, 李昊, 魏进, 等. 考虑细颗粒含量的季冻区公路路基水分迁移特性[J]. 长安大学学报(自然科学版), 2024, 44(4): 27-37.LIU Hong-ping, LI Hao, WEI Jin, et al. Water migration characteristics of highway subgrade in seasonal frozen areas considering fine particle content[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(4): 27-37. [31] 权磊, 田波, 牛开民, 等. 青藏高原高等级道路路基路面温度变化特征[J]. 交通运输工程学报, 2017, 17(2): 21-30. https://transport.chd.edu.cn/article/id/201702003QUAN Lei, TIAN Bo, NIU Kai-min, et al. Temperature variation properties of pavements and subgrades for high-grade roads on Qinghai-Tibet Plateau[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 21-30. https://transport.chd.edu.cn/article/id/201702003 [32] 王青志, 房建宏, 晁刚. 高温冻土地区高等级公路片块石路基降温效果分析[J]. 岩土力学, 2020, 41(1): 305-314.WANG Qing-zhi, FANG Jian-hong, CHAO Gang. Analysis of cooling effect of block-stone expressway embankment in warm temperature permafrost region[J]. Rock and Soil Mechanics, 2020, 41(1): 305-314. [33] 田波, 王昊武, 权磊, 等. 基于CPT试验的多年冻土区路表变形风险评价[J]. 公路交通科技, 2023, 40(9): 1-7, 53.TIAN Bo, WANG Hao-wu, QUAN Lei, et al. Risk assessment on surface deformation in permafrost area based on CPT test[J]. Journal of Highway and Transportation Research and Development, 20, 40(9): 1-7, 53. -
下载: