留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环湿化条件下粉土联合石灰改良弱膨胀土的动力累积变形特性

章定文 刘文俊 侯爵 陈加富 唐紫琼

章定文, 刘文俊, 侯爵, 陈加富, 唐紫琼. 循环湿化条件下粉土联合石灰改良弱膨胀土的动力累积变形特性[J]. 交通运输工程学报, 2025, 25(4): 71-79. doi: 10.19818/j.cnki.1671-1637.2025.04.005
引用本文: 章定文, 刘文俊, 侯爵, 陈加富, 唐紫琼. 循环湿化条件下粉土联合石灰改良弱膨胀土的动力累积变形特性[J]. 交通运输工程学报, 2025, 25(4): 71-79. doi: 10.19818/j.cnki.1671-1637.2025.04.005
ZHANG Ding-wen, LIU Wen-jun, HOU Jue, CHEN Jia-fu, TANG Zi-qiong. Dynamic cumulative deformation characteristics of weak expansive soil improved by silt and lime under cyclic wetting[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 71-79. doi: 10.19818/j.cnki.1671-1637.2025.04.005
Citation: ZHANG Ding-wen, LIU Wen-jun, HOU Jue, CHEN Jia-fu, TANG Zi-qiong. Dynamic cumulative deformation characteristics of weak expansive soil improved by silt and lime under cyclic wetting[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 71-79. doi: 10.19818/j.cnki.1671-1637.2025.04.005

循环湿化条件下粉土联合石灰改良弱膨胀土的动力累积变形特性

doi: 10.19818/j.cnki.1671-1637.2025.04.005
基金项目: 

国家重点研发计划 2023YFB2604800

详细信息
    作者简介:

    章定文(1978-),男,湖南常德人,东南大学教授,工学博士,从事交通岩土工程研究

    通讯作者:

    ZHANG Ding-wen (1978-), male, professor, PhD, zhang@seu.edu.cn

  • 中图分类号: U416.16

Dynamic cumulative deformation characteristics of weak expansive soil improved by silt and lime under cyclic wetting

Funds: 

National Key R&D Program 2023YFB2604800

Article Text (Baidu Translation)
  • 摘要: 对不同掺入量粉土和石灰的改良膨胀土试样开展了物理力学特性及微观电镜扫描试验,分析其改良机理;在此基础上,采用GDS动三轴仪开展改良土动三轴试验,研究不同动应力幅值、含水率、循环湿化次数对改良膨胀土动力累积变形的影响规律,并构建了改良膨胀土累积变形预测模型。研究结果表明:掺入2.5%的低剂量石灰既可以通过“砂化”作用提高粉土和膨胀土的拌和性,又能提高单一粉土物理改良土的强度和水稳性;掺入粉土可改善膨胀土颗粒级配,增大土体孔隙率,抑制膨胀土的膨胀潜势,并提升改良土加州承载比(CBR)值;研究中采用40%粉土联合2.5%石灰改良膨胀土可满足公路路基填料各项指标要求;循环加载初期,改良土累积应变增长迅速,前2 000次循环加载后,改良膨胀土累积应变占79.3%,随后累积应变增长速率趋于稳定,呈塑性安定型;改良土最终累积应变与循环湿化次数成幂函数增长关系;最不利工况下最终累积应变小于1.0%,工后变形满足路基长期稳定性要求;构建的考虑动应力幅值、含水率及湿化次数影响的动力累积应变预测模型,可为粉土石灰改良膨胀土路基长期变形估算提供依据。

     

  • 图  1  膨胀土和粉土级配曲线

    Figure  1.  Grading curves of expansive soil and silt

    图  2  不同粉土和石灰掺入量条件下改良膨胀土的物理力学指标

    Figure  2.  Physical and mechanical indexes of improved expansive soil with different content of silt and lime

    图  3  500倍扫描电镜照片对比

    Figure  3.  Comparison of 500 times SEM photos

    图  4  试样增湿脱湿过程

    Figure  4.  Wetting and dewetting process of samples

    图  5  试样含水率测试点

    Figure  5.  Test points of sample moisture content

    图  6  试样内部含水率标准差随时间变化曲线

    Figure  6.  Curves of standard deviation of moisture content in samples changing with time

    图  7  循环荷载加载

    Figure  7.  Cyclic loading

    图  8  GDS动三轴试验系统

    Figure  8.  GDS dynamic triaxial test system

    图  9  含水率wopσd=60 kPa下累积应变增长曲线

    Figure  9.  Cumulative strain growth curve under water content wop and σd=60 kPa

    图  10  不同幅值动应力下改良土累积应变发展曲线

    Figure  10.  Cumulative strain growth curves with different dynamic stresses

    图  11  不同含水率下累积应变增长曲线

    Figure  11.  Cumulative strain growth curves under different water content

    图  12  最终累积应变与循环湿化次数关系曲线

    Figure  12.  Relationship curves between final cumulative strain and cyclic wetting times

    图  13  归一化最终累积应变与含水率关系曲线

    Figure  13.  Relationship between normalized ultimate cumulative strain and water content

    图  14  归一化最终累积应变与湿化次数关系曲线

    Figure  14.  Relationship between normalized ultimate cumulative strain and wetting times

    图  15  累积应变预测模型验证(n=10)

    Figure  15.  Verification of cumulative strain prediction model (n=10)

    表  1  膨胀土和粉土基本物理参数

    Table  1.   Basic physical parameters of expansive soil and silt

    土体类别 土粒相对密度 液限/% 塑限/% 塑性指数 自由膨胀率/%
    膨胀土 2.73 54.1 28.8 25.3 55
    粉土 2.70 32.3 25.0 7.3
    下载: 导出CSV

    表  2  累积应变预测模型拟合结果

    Table  2.   Fitting results of cumulative strain prediction model

    湿化次数 含水率 拟合参数 决定系数R2
    a1 b1 m1
    0 wop 0.056 0.118 0.727 0.994
    0 wop+4% 0.074 0.116 0.737 0.995
    0 wop+8% 0.097 0.116 0.753 0.993
    1 wop 0.099 0.115 0.751 0.981
    1 wop+4% 0.112 0.115 0.739 0.991
    1 wop+8% 0.095 0.116 0.726 0.984
    5 wop 0.105 0.117 0.751 0.965
    5 wop+4% 0.120 0.119 0.730 0.993
    5 wop+8% 0.164 0.115 0.734 0.990
    10 wop 0.181 0.116 0.746 0.972
    10 wop+4% 0.221 0.119 0.735 0.983
    10 wop+8% 0.262 0.117 0.732 0.969
    下载: 导出CSV
  • [1] 《中国公路学报》编辑部. 中国路基工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(3): 1-49.

    Editorial Department of China Journal of Highway and Transport. Review on China's subgrade engineering research·2021[J]. China Journal of Highway and Transport, 2021, 34(3): 1-49.
    [2] 季节, 梁犇, 韩秉烨, 等. 中国道路工程中土壤固化技术综述[J]. 交通运输工程学报, 2023, 23(2): 47-66. doi: 10.19818/j.cnki.1671-1637.2023.02.003

    JI Jie, LIANG Ben, HAN Bing-ye, et al. Review on soil solidified technologies in road engineering in China[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 47-66. doi: 10.19818/j.cnki.1671-1637.2023.02.003
    [3] CHU C F, ZHANG F, WU D X, et al. Study on mechanical properties of the expansive soil treated with iron tailings sand[J]. Advances in Civil Engineering, 2021, 2021(1): 9944845. doi: 10.1155/2021/9944845
    [4] 张艺, 李永强, 章定文, 等. 粉土改良膨胀土的路用性能与现场试验[J]. 岩土力学, 2023, 44(10): 2942-2952.

    ZHANG Yi, LI Yong-qiang, ZHANG Ding-wen, et al. Road performance and field test of expansive soil improved by silt[J]. Rock and Soil Mechanics, 2023, 44(10): 2942-2952.
    [5] 王众, 樊晓军, 潘旋, 等. 粉土石灰联合改良膨胀土路基填筑质量控制[J]. 公路, 2023, 68(6): 171-176.

    WANG Zhong, FAN Xiao-jun, PAN Xuan, et al. Quality control of silt lime combined with improved expansive soil roadbed filling[J]. Highway, 2023, 68(6): 171-176.
    [6] CHU C F, SHENG S S, WANG Y H, et al. Effect of agglomerate size on engineering characteristics of expansive soil improved by industrial waste residue[J]. KSCE Journal of Civil Engineering, 2024, 28(7): 2750-2760. doi: 10.1007/s12205-024-2043-y
    [7] ALNMR A, RAY R. Investigating the impact of varying sand content on the physical characteristics of expansive clay soils from Syria[J]. Geotechnical and Geological Engineering, 2024, 42(4): 2675-2691. doi: 10.1007/s10706-023-02698-w
    [8] 李国维, 巩齐齐, 李涛, 等. 崩解性砂软岩改良弱膨胀土性状实验研究[J]. 工程地质学报, 2021, 29(1): 34-43.

    LI Guo-wei, GONG Qi-qi, LI Tao, et al. Experimental study on properties of weak expansive soil improved by disintegrated sandstone[J]. Journal of Engineering Geology, 2021, 29(1): 34-43.
    [9] ALISHA S S, DUMPA V, SREENIVASULU V, et al. Red mud nano-fines potential for improving the geotechnical properties of ameliorated reconstituted black cotton soil[J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2022, 5(4): 427-445. doi: 10.1007/s41939-022-00127-8
    [10] LUO P, MA M. Failure mechanisms and protection measures for expansive soil slopes: a review[J]. Sustainability, 2024, 16(12): 5127. doi: 10.3390/su16125127
    [11] 石玉玲, 常洲, 安宁, 等. 基于干湿循环试验的黄土路堑浅层边坡长期稳定性分析[J]. 交通运输工程学报, 2023, 23(4): 104-115. doi: 10.19818/j.cnki.1671-1637.2023.04.007

    SHI Yu-ling, CHANG Zhou, AN Ning, et al. Long-term stability analysis of loess cutting shallow slope based on wet-dry cycle test[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 104-115. doi: 10.19818/j.cnki.1671-1637.2023.04.007
    [12] LIU Y L, ZHAO Y G, VANAPALLI S K, et al. Soil-water characteristic curve of expansive soils considering cumulative damage effects of wetting and drying cycles[J]. Engineering Geology, 2024, 339: 107642. doi: 10.1016/j.enggeo.2024.107642
    [13] 刘维正, 徐阳, 蔡雨, 等. 湿化作用下重载铁路改良膨胀土动力响应与累积变形试验研究[J]. 铁道学报, 2023, 45(2): 127-138.

    LIU Wei-zheng, XU Yang, CAI Yu, et al. Dynamic response and accumulative deformation of modified expansive soil of heavy-haul railway under wetting action[J]. Journal of the China Railway Society, 2023, 45(2): 127-138.
    [14] ZHANG J H, ZHANG A S, LI J, et al. Gray correlation analysis and prediction on permanent deformation of subgrade filled with construction and demolition materials[J]. Materials, 2019, 12(18): 3035. doi: 10.3390/ma12183035
    [15] 刘维正, 万家乐, 徐阳, 等. 反复湿化和动载作用下路基红黏土累积变形特性研究[J]. 中国公路学报, 2022, 35(8): 129-139.

    LIU Wei-zheng, WAN Jia-le, XU Yang, et al. Accumulative deformation characteristics of lateritic clay under combined action of cyclic wetting and dynamic loading[J]. China Journal of Highway and Transport, 2022, 35(8): 129-139.
    [16] 刘维正, 徐阳, 石志国, 等. 湿化作用下改良膨胀土永久变形特性多级加载试验研究[J]. 中南大学学报(自然科学版), 2022, 53(1): 296-305.

    LIU Wei-zheng, XU Yang, SHI Zhi-guo, et al. Characterization of permanent deformation of modified expansive soil under wetting effect using multi-stage dynamic triaxial test[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 296-305.
    [17] 尹松, 刘鹏飞, 孙玉周, 等. 列车荷载作用下压实花岗岩残积土累积变形特性试验研究[J]. 振动与冲击, 2024, 43(4): 87-95.

    YIN Song, LIU Peng-fei, SUN Yu-zhou, et al. Research on cumulative plastic strain characteristics of granite residual soil under cyclic loading[J]. Journal of Vibration and Shock, 2024, 43(4): 87-95.
    [18] QIAN J G, LI S Y, GU X Q, et al. A unified model for estimating the permanent deformation of sand under a large number of cyclic loads[J]. Ocean Engineering, 2019, 181: 293-302. doi: 10.1016/j.oceaneng.2019.03.051
    [19] REN X W, XU Q, TENG J D, et al. A novel model for the cumulative plastic strain of soft marine clay under long-term low cyclic loads[J]. Ocean Engineering, 2018, 149: 194-204. doi: 10.1016/j.oceaneng.2017.12.028
    [20] ZHANG J H, PENG J H, ZHANG A S, et al. Prediction of permanent deformation for subgrade soils under traffic loading in Southern China[J]. International Journal of Pavement Engineering, 2022, 23(3): 673-682. doi: 10.1080/10298436.2020.1765244
    [21] GU F, ZHANG Y Q, DRODDY C V, et al. Development of a new mechanistic empirical rutting model for unbound granular material[J]. Journal of Materials in Civil Engineering, 2016, 28(8): 04016051. doi: 10.1061/(ASCE)MT.1943-5533.0001555
    [22] 周锐, 王保田, 王东英, 等. 不同干湿条件下中等膨胀土裂隙发展及作用机理分析[J]. 农业工程学报, 2023, 39(21): 98-107.

    ZHOU Rui, WANG Bao-tian, WANG Dong-ying, et al. Analysis of the crack development and mechanism of moderately expansive soil under different drying-wetting conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(21): 98-107.
    [23] 巩齐齐, 明文静. 崩解性砂岩改良膨胀土的裂隙发育规律研究[J]. 土木工程学报, 2022, 55(2): 73-81.

    GONG Qi-qi, MING Wen-jing. Study on fracture development of expansive soil improved by disintegrated sandstone[J]. China Civil Engineering Journal, 2022, 55(2): 73-81.
    [24] ZENG L, YAO X F, ZHANG J H, et al. Ponded infiltration and spatial-temporal prediction of the water content of silty mudstone[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(10): 5371-5383. doi: 10.1007/s10064-020-01880-1
    [25] JIAN X, ZHA X D, ZHANG H R, et al. Research on the damaging mechanisms of expansive soil in subgrade[J]. Mechanics of Advanced Materials and Structures, 2024, 31(11): 2362-2369. doi: 10.1080/15376494.2022.2156004
    [26] 崔新壮, 包振昊, 郝建文, 等. 重载公路路基动力响应现场测试与三维空间分布规律[J]. 中国公路学报, 2023, 36(10): 75-83.

    CUI Xin-zhuang, BAO Zhen-hao, HAO Jian-wen, et al. Field test and three-dimensional spatial distribution of dynamic response of heavy-duty highway subgrades[J]. China Journal of Highway and Transport, 2023, 36(10): 75-83.
    [27] 田小革, 李光耀, 窦文利, 等. 干湿循环和动载作用下粉砂土累积变形研究[J]. 铁道工程学报, 2023, 40(9): 1-7, 15.

    TIAN Xiao-ge, LI Guang-yao, DOU Wen-li, et al. Study on cumulative deformation of silty soil under dry-wet cycle and dynamic load[J]. Journal of Railway Engineering Society, 2023, 40(9): 1-7, 15.
    [28] 陈康, 刘先峰, 袁胜洋, 等. 饱和红层泥岩填料累积变形特性及安定界限研究[J]. 岩土力学, 2022, 43(5): 1261-1268.

    CHEN Kang, LIU Xian-feng, YUAN Sheng-yang, et al. Experimental study of accumulative deformation behaviour and shakedown limit of saturated red mudstone fill material[J]. Rock and Soil Mechanics, 2022, 43(5): 1261-1268.
    [29] BARMAN D, DASH S K. Stabilization of expansive soils using chemical additives: a review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(4): 1319-1342. doi: 10.1016/j.jrmge.2022.02.011
    [30] RAHMAN M S, ERLINGSSON S. Predicting permanent deformation behaviour of unbound granular materials[J]. International Journal of Pavement Engineering, 2015, 16(7): 587-601. doi: 10.1080/10298436.2014.943209
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  59
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-24
  • 录用日期:  2025-05-06
  • 修回日期:  2025-02-19
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回