Dynamic cumulative deformation characteristics of weak expansive soil improved by silt and lime under cyclic wetting
-
摘要: 对不同掺入量粉土和石灰的改良膨胀土试样开展了物理力学特性及微观电镜扫描试验,分析其改良机理;在此基础上,采用GDS动三轴仪开展改良土动三轴试验,研究不同动应力幅值、含水率、循环湿化次数对改良膨胀土动力累积变形的影响规律,并构建了改良膨胀土累积变形预测模型。研究结果表明:掺入2.5%的低剂量石灰既可以通过“砂化”作用提高粉土和膨胀土的拌和性,又能提高单一粉土物理改良土的强度和水稳性;掺入粉土可改善膨胀土颗粒级配,增大土体孔隙率,抑制膨胀土的膨胀潜势,并提升改良土加州承载比(CBR)值;研究中采用40%粉土联合2.5%石灰改良膨胀土可满足公路路基填料各项指标要求;循环加载初期,改良土累积应变增长迅速,前2 000次循环加载后,改良膨胀土累积应变占79.3%,随后累积应变增长速率趋于稳定,呈塑性安定型;改良土最终累积应变与循环湿化次数成幂函数增长关系;最不利工况下最终累积应变小于1.0%,工后变形满足路基长期稳定性要求;构建的考虑动应力幅值、含水率及湿化次数影响的动力累积应变预测模型,可为粉土石灰改良膨胀土路基长期变形估算提供依据。Abstract: The physical and mechanical property and microscopic electron microscope scanning tests were conducted on improved expansive soil samples with different silt and lime content. The improvement mechanism was analyzed. The dynamic triaxial test of the improved soil was carried out using the GDS dynamic triaxial apparatus. The influence rules of different dynamic stresses, water content, and cyclic wetting times on the cumulative deformation of the improved soil were studied. A cumulative deformation prediction model of improved soil was constructed. The results show that the addition of 2.5% low-amount lime can not only enhance the mixing property of silt and expansive soil through sanding, but also improve the strength and water stability of single silt physically improved soil. The addition of silt can optimize the particle gradation of expansive soil, increase the porosity of the soil, inhibit the expansion potential of expansive soil, and improve the California bearing ratio (CBR) value of improved soil. The requirements of various indexes of highway subgrade filling can be met by employing 40% silt combined with 2.5% lime to improve expansive soil. At the initial stage of cyclic loading, the cumulative strain of the improved soil increases rapidly. After 2 000 cycles of loading, the cumulative strain of the improved expansive soil accounts for 79.3%, and then the growth rate of the cumulative strain tends to be stable, showing plastic stability. The final cumulative strain of the improved soil has a power function growth relationship with cyclic wetting times. Under the most unfavorable conditions, the final cumulative strain is less than 1.0%. The post-construction deformation meets the long-term stability requirements of the subgrade. A dynamic cumulative strain prediction model is constructed considering the influence of dynamic stress amplitude, water content, and humidification times, providing a reference for the long-term deformation prediction of silt-lime improved expansive soil subgrade.
-
表 1 膨胀土和粉土基本物理参数
Table 1. Basic physical parameters of expansive soil and silt
土体类别 土粒相对密度 液限/% 塑限/% 塑性指数 自由膨胀率/% 膨胀土 2.73 54.1 28.8 25.3 55 粉土 2.70 32.3 25.0 7.3 表 2 累积应变预测模型拟合结果
Table 2. Fitting results of cumulative strain prediction model
湿化次数 含水率 拟合参数 决定系数R2 a1 b1 m1 0 wop 0.056 0.118 0.727 0.994 0 wop+4% 0.074 0.116 0.737 0.995 0 wop+8% 0.097 0.116 0.753 0.993 1 wop 0.099 0.115 0.751 0.981 1 wop+4% 0.112 0.115 0.739 0.991 1 wop+8% 0.095 0.116 0.726 0.984 5 wop 0.105 0.117 0.751 0.965 5 wop+4% 0.120 0.119 0.730 0.993 5 wop+8% 0.164 0.115 0.734 0.990 10 wop 0.181 0.116 0.746 0.972 10 wop+4% 0.221 0.119 0.735 0.983 10 wop+8% 0.262 0.117 0.732 0.969 -
[1] 《中国公路学报》编辑部. 中国路基工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(3): 1-49.Editorial Department of China Journal of Highway and Transport. Review on China's subgrade engineering research·2021[J]. China Journal of Highway and Transport, 2021, 34(3): 1-49. [2] 季节, 梁犇, 韩秉烨, 等. 中国道路工程中土壤固化技术综述[J]. 交通运输工程学报, 2023, 23(2): 47-66. doi: 10.19818/j.cnki.1671-1637.2023.02.003JI Jie, LIANG Ben, HAN Bing-ye, et al. Review on soil solidified technologies in road engineering in China[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 47-66. doi: 10.19818/j.cnki.1671-1637.2023.02.003 [3] CHU C F, ZHANG F, WU D X, et al. Study on mechanical properties of the expansive soil treated with iron tailings sand[J]. Advances in Civil Engineering, 2021, 2021(1): 9944845. doi: 10.1155/2021/9944845 [4] 张艺, 李永强, 章定文, 等. 粉土改良膨胀土的路用性能与现场试验[J]. 岩土力学, 2023, 44(10): 2942-2952.ZHANG Yi, LI Yong-qiang, ZHANG Ding-wen, et al. Road performance and field test of expansive soil improved by silt[J]. Rock and Soil Mechanics, 2023, 44(10): 2942-2952. [5] 王众, 樊晓军, 潘旋, 等. 粉土石灰联合改良膨胀土路基填筑质量控制[J]. 公路, 2023, 68(6): 171-176.WANG Zhong, FAN Xiao-jun, PAN Xuan, et al. Quality control of silt lime combined with improved expansive soil roadbed filling[J]. Highway, 2023, 68(6): 171-176. [6] CHU C F, SHENG S S, WANG Y H, et al. Effect of agglomerate size on engineering characteristics of expansive soil improved by industrial waste residue[J]. KSCE Journal of Civil Engineering, 2024, 28(7): 2750-2760. doi: 10.1007/s12205-024-2043-y [7] ALNMR A, RAY R. Investigating the impact of varying sand content on the physical characteristics of expansive clay soils from Syria[J]. Geotechnical and Geological Engineering, 2024, 42(4): 2675-2691. doi: 10.1007/s10706-023-02698-w [8] 李国维, 巩齐齐, 李涛, 等. 崩解性砂软岩改良弱膨胀土性状实验研究[J]. 工程地质学报, 2021, 29(1): 34-43.LI Guo-wei, GONG Qi-qi, LI Tao, et al. Experimental study on properties of weak expansive soil improved by disintegrated sandstone[J]. Journal of Engineering Geology, 2021, 29(1): 34-43. [9] ALISHA S S, DUMPA V, SREENIVASULU V, et al. Red mud nano-fines potential for improving the geotechnical properties of ameliorated reconstituted black cotton soil[J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2022, 5(4): 427-445. doi: 10.1007/s41939-022-00127-8 [10] LUO P, MA M. Failure mechanisms and protection measures for expansive soil slopes: a review[J]. Sustainability, 2024, 16(12): 5127. doi: 10.3390/su16125127 [11] 石玉玲, 常洲, 安宁, 等. 基于干湿循环试验的黄土路堑浅层边坡长期稳定性分析[J]. 交通运输工程学报, 2023, 23(4): 104-115. doi: 10.19818/j.cnki.1671-1637.2023.04.007SHI Yu-ling, CHANG Zhou, AN Ning, et al. Long-term stability analysis of loess cutting shallow slope based on wet-dry cycle test[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 104-115. doi: 10.19818/j.cnki.1671-1637.2023.04.007 [12] LIU Y L, ZHAO Y G, VANAPALLI S K, et al. Soil-water characteristic curve of expansive soils considering cumulative damage effects of wetting and drying cycles[J]. Engineering Geology, 2024, 339: 107642. doi: 10.1016/j.enggeo.2024.107642 [13] 刘维正, 徐阳, 蔡雨, 等. 湿化作用下重载铁路改良膨胀土动力响应与累积变形试验研究[J]. 铁道学报, 2023, 45(2): 127-138.LIU Wei-zheng, XU Yang, CAI Yu, et al. Dynamic response and accumulative deformation of modified expansive soil of heavy-haul railway under wetting action[J]. Journal of the China Railway Society, 2023, 45(2): 127-138. [14] ZHANG J H, ZHANG A S, LI J, et al. Gray correlation analysis and prediction on permanent deformation of subgrade filled with construction and demolition materials[J]. Materials, 2019, 12(18): 3035. doi: 10.3390/ma12183035 [15] 刘维正, 万家乐, 徐阳, 等. 反复湿化和动载作用下路基红黏土累积变形特性研究[J]. 中国公路学报, 2022, 35(8): 129-139.LIU Wei-zheng, WAN Jia-le, XU Yang, et al. Accumulative deformation characteristics of lateritic clay under combined action of cyclic wetting and dynamic loading[J]. China Journal of Highway and Transport, 2022, 35(8): 129-139. [16] 刘维正, 徐阳, 石志国, 等. 湿化作用下改良膨胀土永久变形特性多级加载试验研究[J]. 中南大学学报(自然科学版), 2022, 53(1): 296-305.LIU Wei-zheng, XU Yang, SHI Zhi-guo, et al. Characterization of permanent deformation of modified expansive soil under wetting effect using multi-stage dynamic triaxial test[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 296-305. [17] 尹松, 刘鹏飞, 孙玉周, 等. 列车荷载作用下压实花岗岩残积土累积变形特性试验研究[J]. 振动与冲击, 2024, 43(4): 87-95.YIN Song, LIU Peng-fei, SUN Yu-zhou, et al. Research on cumulative plastic strain characteristics of granite residual soil under cyclic loading[J]. Journal of Vibration and Shock, 2024, 43(4): 87-95. [18] QIAN J G, LI S Y, GU X Q, et al. A unified model for estimating the permanent deformation of sand under a large number of cyclic loads[J]. Ocean Engineering, 2019, 181: 293-302. doi: 10.1016/j.oceaneng.2019.03.051 [19] REN X W, XU Q, TENG J D, et al. A novel model for the cumulative plastic strain of soft marine clay under long-term low cyclic loads[J]. Ocean Engineering, 2018, 149: 194-204. doi: 10.1016/j.oceaneng.2017.12.028 [20] ZHANG J H, PENG J H, ZHANG A S, et al. Prediction of permanent deformation for subgrade soils under traffic loading in Southern China[J]. International Journal of Pavement Engineering, 2022, 23(3): 673-682. doi: 10.1080/10298436.2020.1765244 [21] GU F, ZHANG Y Q, DRODDY C V, et al. Development of a new mechanistic empirical rutting model for unbound granular material[J]. Journal of Materials in Civil Engineering, 2016, 28(8): 04016051. doi: 10.1061/(ASCE)MT.1943-5533.0001555 [22] 周锐, 王保田, 王东英, 等. 不同干湿条件下中等膨胀土裂隙发展及作用机理分析[J]. 农业工程学报, 2023, 39(21): 98-107.ZHOU Rui, WANG Bao-tian, WANG Dong-ying, et al. Analysis of the crack development and mechanism of moderately expansive soil under different drying-wetting conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(21): 98-107. [23] 巩齐齐, 明文静. 崩解性砂岩改良膨胀土的裂隙发育规律研究[J]. 土木工程学报, 2022, 55(2): 73-81.GONG Qi-qi, MING Wen-jing. Study on fracture development of expansive soil improved by disintegrated sandstone[J]. China Civil Engineering Journal, 2022, 55(2): 73-81. [24] ZENG L, YAO X F, ZHANG J H, et al. Ponded infiltration and spatial-temporal prediction of the water content of silty mudstone[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(10): 5371-5383. doi: 10.1007/s10064-020-01880-1 [25] JIAN X, ZHA X D, ZHANG H R, et al. Research on the damaging mechanisms of expansive soil in subgrade[J]. Mechanics of Advanced Materials and Structures, 2024, 31(11): 2362-2369. doi: 10.1080/15376494.2022.2156004 [26] 崔新壮, 包振昊, 郝建文, 等. 重载公路路基动力响应现场测试与三维空间分布规律[J]. 中国公路学报, 2023, 36(10): 75-83.CUI Xin-zhuang, BAO Zhen-hao, HAO Jian-wen, et al. Field test and three-dimensional spatial distribution of dynamic response of heavy-duty highway subgrades[J]. China Journal of Highway and Transport, 2023, 36(10): 75-83. [27] 田小革, 李光耀, 窦文利, 等. 干湿循环和动载作用下粉砂土累积变形研究[J]. 铁道工程学报, 2023, 40(9): 1-7, 15.TIAN Xiao-ge, LI Guang-yao, DOU Wen-li, et al. Study on cumulative deformation of silty soil under dry-wet cycle and dynamic load[J]. Journal of Railway Engineering Society, 2023, 40(9): 1-7, 15. [28] 陈康, 刘先峰, 袁胜洋, 等. 饱和红层泥岩填料累积变形特性及安定界限研究[J]. 岩土力学, 2022, 43(5): 1261-1268.CHEN Kang, LIU Xian-feng, YUAN Sheng-yang, et al. Experimental study of accumulative deformation behaviour and shakedown limit of saturated red mudstone fill material[J]. Rock and Soil Mechanics, 2022, 43(5): 1261-1268. [29] BARMAN D, DASH S K. Stabilization of expansive soils using chemical additives: a review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(4): 1319-1342. doi: 10.1016/j.jrmge.2022.02.011 [30] RAHMAN M S, ERLINGSSON S. Predicting permanent deformation behaviour of unbound granular materials[J]. International Journal of Pavement Engineering, 2015, 16(7): 587-601. doi: 10.1080/10298436.2014.943209 -
下载: