Reflection characteristics and morphological recognition of underground cavity diseases based on 3D ground penetrating radar
Article Text (Baidu Translation)
-
摘要: 针对三维探地雷达(3D GPR)在空洞病害反射特性领域研究的不足,采用gprMax正演模拟软件建立了包含多种形态特征(球体、正方体、三棱柱和不规则几何体)的道路结构空洞模型;通过对B-Scan剖面图像和C-Scan深度切片图像的反射特征进行机理分析和规律总结,提出了相应的辨识方法;以南昌市某城市道路为例进行了工程应用和开挖验证。研究结果表明:在二维剖面图像中空洞病害均呈现半双曲线特征,且空洞病害与测线的位置关系会影响半双曲线的显示深度;C-Scan深度切片图像更有助于显示空洞病害的外观形态,尤其是圆形空洞病害;在C-Scan深度切片图像中,空洞病害形状会随着时间深度的加深而逐渐变大;仅从B-Scan剖面图像中难以准确辨识空洞病害形态,需要结合C-Scan深度切片图像进行综合解译。提出的方法有助于提升3D GPR图像解释的准确性,实现对城市道路病害治理和预防塌陷的目标。Abstract: Aiming at the lack of research on 3D ground penetrating radar (GPR) in the field of cavity disease reflection characteristics, gprMax forward simulation software was adopted to establish a road structure cavity model containing various morphological features (sphere, cube, triangular prism, and irregular geometric body). Based on the mechanism analysis and rule summary of reflection characteristics of B-Scan profile image and C-Scan depth slice image, the corresponding identification method was proposed, and the engineering application and excavation verification were carried out by taking a city road in Nanchang City as an example. Analysis results show that in the two-dimensional profile image, the cavity diseases show the characteristics of a semi-hyperbola, and the position relationship between the cavity diseases and the survey line will affect the display depth of the semi-hyperbola. C-Scan depth slice images are more helpful to show the appearance of cavity diseases, especially the circular cavity diseases. In the C-Scan depth slice image, the shape of cavity diseases will gradually become larger as the time depth intensifies. Is difficult to accurately identify the morphology of cavity diseases from B-Scan profile images only, and it is necessary to combine C-Scan depth slice images for comprehensive interpretation. The proposed method helps to improve the accuracy of 3D GPR image interpretation and achieve the goal of urban road disease control and collapse prevention.
-
-
[1] 张宇辉, 张献民. 机场道面及其下部地基脱空的测试方法[J]. 交通运输工程学报, 2016, 16(6): 1-11. https://transport.chd.edu.cn/article/id/201606001ZHANG Yu-hui, ZHANG Xian-min. Test methods of airport pavement and subjacent foundation void[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 1-11. https://transport.chd.edu.cn/article/id/201606001 [2] 王洪华, 龚俊波, 王敏玲, 等. 三维探地雷达技术在道路塌陷空洞探测中的应用[J]. CT理论与应用研究, 2018, 27(5): 609-616.WANG Hong-hua, GONG Jun-bo, WANG Min-ling, et al. The application of three dimensional ground penetrating radar for detecting road collapse[J]. Computerized Tomography Theory and Applications, 2018, 27(5): 609-616. [3] TRAN K T, NGUYEN T D, HILTUNEN D R, et al. 3D full- waveform inversion in time-frequency domain: field data application[J]. Journal of Applied Geophysics, 2020, 178: 104078. [4] 耿庆桥, 贾元华, 叶英, 等. 隧道衬砌背后脱空识别的改进瞬变电磁雷达法[J]. 交通运输工程学报, 2023, 23(4): 218-232. doi: 10.19818/j.cnki.1671-1637.2023.04.016GENG Qing-qiao, JIA Yuan-hua, YE Ying, et al. Improved transient electromagnetic radar method of void identification behind tunnel lining[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 218-232. doi: 10.19818/j.cnki.1671-1637.2023.04.016 [5] FORES B, HULIN G, SIMON F X, et al. GPR on city roadways: two case studies with feedback from trial trenching[M]. Kiel: Kiel University Publishing, 2023. [6] 刘国文, 杨修猛, 崔鑫, 等. 地质雷达和视电阻率联合剖面法在地铁勘察中的应用[J]. 都市快轨交通, 2020, 33(1): 104-108.LIU Guo-wen, YANG Xiu-meng, CUI Xin, et al. Application of ground penetration radar and apparent resistivity combined profiling in subway investigation[J]. Urban Rapid Rail Transit, 2020, 33(1): 104-108. [7] 蒋建国, 刘程, 陈媛, 等. 地质雷达正演模拟及在断层富水带超前地质预报的应用研究[J]. 铁道科学与工程学报, 2019, 16(11): 2801-2808.JIANG Jian-guo, LIU Cheng, CHEN Yuan, et al. Study on GPR forward modeling and its application in advanced geological prediction of fault water-rich zone[J]. Journal of Railway Science and Engineering, 2019, 16(11): 2801-2808. [8] 郭士礼, 段建先, 张建锋, 等. 探地雷达在城市道路塌陷隐患探测中的应用[J]. 地球物理学进展, 2019, 34(4): 1609-1613.GUO Shi-li, DUAN Jian-xian, ZHANG Jian-feng, et al. Application of GPR in urban road hidden diseases detection[J]. Progress in Geophysics, 2019, 34(4): 1609-1613. [9] CUI G Y, XU J, WANG Y H, et al. Multiple objects automatic detection of GPR data based on the AC-EWV and genetic algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 61: 5100516. [10] CUI G Y, WANG Y H, LI Y J, et al. Intelligent identification of defective regions of voids in tunnels based on GPR data[J]. NDT & E International, 2025, 149: 103244. [11] 胡荣明, 李鑫, 竞霞, 等. YOLOv7在探地雷达B-Scan图像解译中的应用[J]. 测绘通报, 2023(8): 29-33.HU Rong-ming, LI Xin, JING Xia, et al. Application of YOLOv7 in GPR B-Scan image interpretation[J]. Bulletin of Surveying and Mapping, 2023(8): 29-33. [12] 杜豫川, 岳光华, 刘成龙, 等. 探地雷达多特征融合的城市空洞自动识别方法[J]. 中国公路学报, 2023, 36(3): 108-119.DU Yu-chuan, YUE Guang-hua, LIU Cheng-long, et al. Research on automatic detection of urban cavity based on multi-feature fusion of GPR[J]. China Journal of Highway and Transport, 2023, 36(3): 108-119. [13] 崔广炎, 王艳辉, 徐杰, 等. 基于改进Faster R-CNN的隧道衬砌中离散实体目标自动检测研究[J]. 铁道学报, 2024, 46(2): 171-180.CUI Guang-yan, WANG Yan-hui, XU Jie, et al. Automatic detection of discrete entity objects in tunnel lining based on improved faster R-CNN[J]. Journal of the China Railway Society, 2024, 46(2): 171-180. [14] 曾雄鹰, 王佳龙, 梁晓东, 等. 基于双频高动态探地雷达技术的道路地下病害检测研究[J]. 地球物理学进展, 2022, 37(5): 2225-2232.ZENG Xiong-ying, WANG Jia-long, LIANG Xiao-dong, et al. Research on road underground disease detection by dual-frequency GPR based on high-dynamic range technology[J]. Progress in Geophysics, 2022, 37(5): 2225-2232. [15] 张军, 姜文涛, 张云, 等. 基于极限梯度提升和探地雷达时频特征的水泥路面脱空识别[J]. 同济大学学报(自然科学版), 2024, 52(1): 104-114, 121.ZHANG Jun, JIANG Wen-tao, ZHANG Yun, et al. Cement pavement void identification based on XGBoost and GPR time-frequency features[J]. Journal of Tongji University (Natural Science), 2024, 52(1): 104-114, 121. [16] 周黎明, 张杨, 付代光, 等. 道路地下空洞探地雷达波场和时频特性[J]. 同济大学学报(自然科学版), 2024, 52(1): 77-85.ZHOU Li-ming, ZHANG Yang, FU Dai-guang, et al. Wave field and time-frequency characteristics of ground penetrating radar for underground cavity of road[J]. Journal of Tongji University (Natural Science), 2024, 52(1): 77-85. [17] LIU H, ZHONG J Y, DING F, et al. Detection of early-stage rebar corrosion using a polarimetric ground penetrating radar system[J]. Construction and Building Materials, 2022, 317: 125768. [18] 赵镇, 黄勇, 冯昆. 三维探地雷达在道路检测中的研究与应用[J]. 测绘通报, 2024(2): 148-152.ZHAO Zhen, HUANG Yong, FENG Kun. Research and application of 3D ground penetrating in road detection[J]. Bulletin of Surveying and Mapping, 2024(2): 148-152. [19] HOU F F, LIU X, FAN X Y, et al. DL-aided underground cavity morphology recognition based on 3D GPR data[J]. Mathematics, 2022, 10(15): 2806. [20] 韩海航, 莫佳笛, 周春鹏, 等. 基于注意力融合的三维探地雷达道路病害检测[J]. 计算机工程与设计, 2022, 43(9): 2669-2677.HAN Hai-hang, MO Jia-di, ZHOU Chun-peng, et al. Road disease detection for 3D-GPR maps based on attention fusion[J]. Computer Engineering and Design, 2022, 43(9): 2669-2677. [21] PAN J W, SHI Z S, MENG X, et al. Reflection characteristics of typical road defects in GPR data and its application in road detection[J]. IEEE Access, 2023, 11: 2932-2941. [22] 王石磊, 高岩, 齐法琳, 等. 铁路运营隧道检测技术综述[J]. 交通运输工程学报, 2020, 20(5): 41-57. doi: 10.19818/j.cnki.1671-1637.2020.05.003WANG Shi-lei, GAO Yan, QI Fa-lin, et al. Review on inspection technology of railway operation tunnels[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 41-57. doi: 10.19818/j.cnki.1671-1637.2020.05.003 [23] 王大为, 吕浩天, 汤伏蛟, 等. 三维探地雷达道路隐性病害检测分析与数字化技术综述[J]. 中国公路学报, 2023, 36(3): 1-19.WANG Da-wei, LYU Hao-tian, TANG Fu-jiao, et al. Road structural defects detection and digitalization based on 3D ground penetrating radar technology: a state-of-the-art review[J]. China Journal of Highway and Transport, 2023, 36(3): 1-19. [24] TRAVASSOS X L, AVILA S L, IDA N. Artificial neural networks and machine learning techniques applied to ground penetrating radar: a review[J]. Applied Computing and Informatics, 2021, 17(2): 296-308. [25] MECHBAL Z, KHAMLICHI A. Determination of concrete rebars characteristics by enhanced post-processing of GPR scan raw data[J]. NDT & E International, 2017, 89: 30-39. [26] 张军, 陈思茹, 张子琛, 等. 基于GPR和F-K法的桥面隐性病害无损检测方法[J]. 中国公路学报, 2016, 29(7): 110-116.ZHANG Jun, CHEN Si-ru, ZHANG Zi-chen, et al. Non-destructive detection method for bridge hidden diseases based on GPR and F-K method[J]. China Journal of Highway and Transport, 2016, 29(7): 110-116. [27] XIE X Y, LIU Y J, HUANG H W, et al. Evaluation of grout behind the lining of shield tunnels using ground-penetrating radar in the Shanghai Metro Line, China[J]. Journal of Geophysics and Engineering, 2007, 4(3): 253-261. [28] ALSHARAHI G, FAIZE A, LOUZAZNI M, et al. Detection of cavities and fragile areas by numerical methods and GPR application[J]. Journal of Applied Geophysics, 2019, 164: 225-236. [29] 朱兆荣, 赵守全, 秦欣, 等. 探地雷达隧道衬砌空洞探测效果模型和现场实体试验研究[J]. 岩土工程学报, 2022, 44(增1): 132-137.ZHU Zhao-rong, ZHAO Shou-quan, QIN Xin, et al. Model and field tests on detection effects of tunnel lining cavity by GPR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 132-137. [30] 凌同华, 张亮, 刘浩然, 等. 基于小波提升格式理论的隧道衬砌缺陷定量识别分析[J]. 中国公路学报, 2019, 32(12): 197-204, 226.LING Tong-hua, ZHANG Liang, LIU Hao-ran, et al. Quantitative identification and analysis of tunnel lining defect based on the wavelet lifting scheme theory[J]. China Journal of Highway and Transport, 2019, 32(12): 197-204, 226. -
下载: