留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维探地雷达的地下空洞病害反射特性与形态辨识研究

王艳辉 刘文静 崔广炎

王艳辉, 刘文静, 崔广炎. 基于三维探地雷达的地下空洞病害反射特性与形态辨识研究[J]. 交通运输工程学报, 2025, 25(4): 109-123. doi: 10.19818/j.cnki.1671-1637.2025.04.008
引用本文: 王艳辉, 刘文静, 崔广炎. 基于三维探地雷达的地下空洞病害反射特性与形态辨识研究[J]. 交通运输工程学报, 2025, 25(4): 109-123. doi: 10.19818/j.cnki.1671-1637.2025.04.008
WANG Yan-hui, LIU Wen-jing, CUI Guang-yan. Reflection characteristics and morphological recognition of underground cavity diseases based on 3D ground penetrating radar[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 109-123. doi: 10.19818/j.cnki.1671-1637.2025.04.008
Citation: WANG Yan-hui, LIU Wen-jing, CUI Guang-yan. Reflection characteristics and morphological recognition of underground cavity diseases based on 3D ground penetrating radar[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 109-123. doi: 10.19818/j.cnki.1671-1637.2025.04.008

基于三维探地雷达的地下空洞病害反射特性与形态辨识研究

doi: 10.19818/j.cnki.1671-1637.2025.04.008
基金项目: 

北京市自然科学基金项目 L231001

详细信息
    作者简介:

    王艳辉(1974-),男,河北保定人,北京交通大学教授,工学博士,从事城轨安全理论分析、探地雷达无损检测及智能解译研究

  • 中图分类号: U418

Reflection characteristics and morphological recognition of underground cavity diseases based on 3D ground penetrating radar

Funds: 

Beijing Natural Science Foundation L231001

More Information
Article Text (Baidu Translation)
  • 摘要: 针对三维探地雷达(3D GPR)在空洞病害反射特性领域研究的不足,采用gprMax正演模拟软件建立了包含多种形态特征(球体、正方体、三棱柱和不规则几何体)的道路结构空洞模型;通过对B-Scan剖面图像和C-Scan深度切片图像的反射特征进行机理分析和规律总结,提出了相应的辨识方法;以南昌市某城市道路为例进行了工程应用和开挖验证。研究结果表明:在二维剖面图像中空洞病害均呈现半双曲线特征,且空洞病害与测线的位置关系会影响半双曲线的显示深度;C-Scan深度切片图像更有助于显示空洞病害的外观形态,尤其是圆形空洞病害;在C-Scan深度切片图像中,空洞病害形状会随着时间深度的加深而逐渐变大;仅从B-Scan剖面图像中难以准确辨识空洞病害形态,需要结合C-Scan深度切片图像进行综合解译。提出的方法有助于提升3D GPR图像解释的准确性,实现对城市道路病害治理和预防塌陷的目标。

     

  • 图  1  三维探地雷达检测原理示意

    Figure  1.  Schematic of 3D GPR detection principle

    图  2  三维探地雷达系统

    Figure  2.  3D GPR System

    图  3  三维探地雷达正交切片图像

    Figure  3.  Orthogonal slice images of 3D GPR

    图  4  道路结构正演模型

    Figure  4.  Forward model of road structure

    图  5  16通道发射接收天线位置关系示意

    Figure  5.  Schematic of the position relationship between 16-channel transmit and receive antennas

    图  6  探地雷达堆叠形态图像

    Figure  6.  Stacked morphological images of GPR

    图  7  试验方案设计

    Figure  7.  Experimental scheme design

    图  8  空洞试块雷达B-Scan剖面图像

    Figure  8.  GPR B-Scan profile images of cavity block

    图  9  空洞试块雷达切片图像

    Figure  9.  GPR slice images of cavity block

    图  10  空洞1雷达B-Scan剖面图像

    Figure  10.  GPR B-Scan profile images of cavity 1

    图  11  空洞1三维雷达C-Scan深度切片图像

    Figure  11.  3D GPR C-Scan depth slice images of cavity 1

    图  12  空洞1雷达图像

    Figure  12.  GPR images of cavity 1

    图  13  空洞2雷达C扫描深度图像

    Figure  13.  GPR images of cavity 2

    图  14  空洞3雷达图像

    Figure  14.  GPR images of cavity

    图  15  空洞4雷达图像

    Figure  15.  GPR images of cavity 4

    图  16  Raptor-45型号探地雷达现场检测

    Figure  16.  Field detection of raptor-45 GPR

    图  17  Raptor-45型号探地雷达现场检测

    Figure  17.  Field detection of the aptor-45 GPR

  • [1] 张宇辉, 张献民. 机场道面及其下部地基脱空的测试方法[J]. 交通运输工程学报, 2016, 16(6): 1-11. https://transport.chd.edu.cn/article/id/201606001

    ZHANG Yu-hui, ZHANG Xian-min. Test methods of airport pavement and subjacent foundation void[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 1-11. https://transport.chd.edu.cn/article/id/201606001
    [2] 王洪华, 龚俊波, 王敏玲, 等. 三维探地雷达技术在道路塌陷空洞探测中的应用[J]. CT理论与应用研究, 2018, 27(5): 609-616.

    WANG Hong-hua, GONG Jun-bo, WANG Min-ling, et al. The application of three dimensional ground penetrating radar for detecting road collapse[J]. Computerized Tomography Theory and Applications, 2018, 27(5): 609-616.
    [3] TRAN K T, NGUYEN T D, HILTUNEN D R, et al. 3D full- waveform inversion in time-frequency domain: field data application[J]. Journal of Applied Geophysics, 2020, 178: 104078.
    [4] 耿庆桥, 贾元华, 叶英, 等. 隧道衬砌背后脱空识别的改进瞬变电磁雷达法[J]. 交通运输工程学报, 2023, 23(4): 218-232. doi: 10.19818/j.cnki.1671-1637.2023.04.016

    GENG Qing-qiao, JIA Yuan-hua, YE Ying, et al. Improved transient electromagnetic radar method of void identification behind tunnel lining[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 218-232. doi: 10.19818/j.cnki.1671-1637.2023.04.016
    [5] FORES B, HULIN G, SIMON F X, et al. GPR on city roadways: two case studies with feedback from trial trenching[M]. Kiel: Kiel University Publishing, 2023.
    [6] 刘国文, 杨修猛, 崔鑫, 等. 地质雷达和视电阻率联合剖面法在地铁勘察中的应用[J]. 都市快轨交通, 2020, 33(1): 104-108.

    LIU Guo-wen, YANG Xiu-meng, CUI Xin, et al. Application of ground penetration radar and apparent resistivity combined profiling in subway investigation[J]. Urban Rapid Rail Transit, 2020, 33(1): 104-108.
    [7] 蒋建国, 刘程, 陈媛, 等. 地质雷达正演模拟及在断层富水带超前地质预报的应用研究[J]. 铁道科学与工程学报, 2019, 16(11): 2801-2808.

    JIANG Jian-guo, LIU Cheng, CHEN Yuan, et al. Study on GPR forward modeling and its application in advanced geological prediction of fault water-rich zone[J]. Journal of Railway Science and Engineering, 2019, 16(11): 2801-2808.
    [8] 郭士礼, 段建先, 张建锋, 等. 探地雷达在城市道路塌陷隐患探测中的应用[J]. 地球物理学进展, 2019, 34(4): 1609-1613.

    GUO Shi-li, DUAN Jian-xian, ZHANG Jian-feng, et al. Application of GPR in urban road hidden diseases detection[J]. Progress in Geophysics, 2019, 34(4): 1609-1613.
    [9] CUI G Y, XU J, WANG Y H, et al. Multiple objects automatic detection of GPR data based on the AC-EWV and genetic algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 61: 5100516.
    [10] CUI G Y, WANG Y H, LI Y J, et al. Intelligent identification of defective regions of voids in tunnels based on GPR data[J]. NDT & E International, 2025, 149: 103244.
    [11] 胡荣明, 李鑫, 竞霞, 等. YOLOv7在探地雷达B-Scan图像解译中的应用[J]. 测绘通报, 2023(8): 29-33.

    HU Rong-ming, LI Xin, JING Xia, et al. Application of YOLOv7 in GPR B-Scan image interpretation[J]. Bulletin of Surveying and Mapping, 2023(8): 29-33.
    [12] 杜豫川, 岳光华, 刘成龙, 等. 探地雷达多特征融合的城市空洞自动识别方法[J]. 中国公路学报, 2023, 36(3): 108-119.

    DU Yu-chuan, YUE Guang-hua, LIU Cheng-long, et al. Research on automatic detection of urban cavity based on multi-feature fusion of GPR[J]. China Journal of Highway and Transport, 2023, 36(3): 108-119.
    [13] 崔广炎, 王艳辉, 徐杰, 等. 基于改进Faster R-CNN的隧道衬砌中离散实体目标自动检测研究[J]. 铁道学报, 2024, 46(2): 171-180.

    CUI Guang-yan, WANG Yan-hui, XU Jie, et al. Automatic detection of discrete entity objects in tunnel lining based on improved faster R-CNN[J]. Journal of the China Railway Society, 2024, 46(2): 171-180.
    [14] 曾雄鹰, 王佳龙, 梁晓东, 等. 基于双频高动态探地雷达技术的道路地下病害检测研究[J]. 地球物理学进展, 2022, 37(5): 2225-2232.

    ZENG Xiong-ying, WANG Jia-long, LIANG Xiao-dong, et al. Research on road underground disease detection by dual-frequency GPR based on high-dynamic range technology[J]. Progress in Geophysics, 2022, 37(5): 2225-2232.
    [15] 张军, 姜文涛, 张云, 等. 基于极限梯度提升和探地雷达时频特征的水泥路面脱空识别[J]. 同济大学学报(自然科学版), 2024, 52(1): 104-114, 121.

    ZHANG Jun, JIANG Wen-tao, ZHANG Yun, et al. Cement pavement void identification based on XGBoost and GPR time-frequency features[J]. Journal of Tongji University (Natural Science), 2024, 52(1): 104-114, 121.
    [16] 周黎明, 张杨, 付代光, 等. 道路地下空洞探地雷达波场和时频特性[J]. 同济大学学报(自然科学版), 2024, 52(1): 77-85.

    ZHOU Li-ming, ZHANG Yang, FU Dai-guang, et al. Wave field and time-frequency characteristics of ground penetrating radar for underground cavity of road[J]. Journal of Tongji University (Natural Science), 2024, 52(1): 77-85.
    [17] LIU H, ZHONG J Y, DING F, et al. Detection of early-stage rebar corrosion using a polarimetric ground penetrating radar system[J]. Construction and Building Materials, 2022, 317: 125768.
    [18] 赵镇, 黄勇, 冯昆. 三维探地雷达在道路检测中的研究与应用[J]. 测绘通报, 2024(2): 148-152.

    ZHAO Zhen, HUANG Yong, FENG Kun. Research and application of 3D ground penetrating in road detection[J]. Bulletin of Surveying and Mapping, 2024(2): 148-152.
    [19] HOU F F, LIU X, FAN X Y, et al. DL-aided underground cavity morphology recognition based on 3D GPR data[J]. Mathematics, 2022, 10(15): 2806.
    [20] 韩海航, 莫佳笛, 周春鹏, 等. 基于注意力融合的三维探地雷达道路病害检测[J]. 计算机工程与设计, 2022, 43(9): 2669-2677.

    HAN Hai-hang, MO Jia-di, ZHOU Chun-peng, et al. Road disease detection for 3D-GPR maps based on attention fusion[J]. Computer Engineering and Design, 2022, 43(9): 2669-2677.
    [21] PAN J W, SHI Z S, MENG X, et al. Reflection characteristics of typical road defects in GPR data and its application in road detection[J]. IEEE Access, 2023, 11: 2932-2941.
    [22] 王石磊, 高岩, 齐法琳, 等. 铁路运营隧道检测技术综述[J]. 交通运输工程学报, 2020, 20(5): 41-57. doi: 10.19818/j.cnki.1671-1637.2020.05.003

    WANG Shi-lei, GAO Yan, QI Fa-lin, et al. Review on inspection technology of railway operation tunnels[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 41-57. doi: 10.19818/j.cnki.1671-1637.2020.05.003
    [23] 王大为, 吕浩天, 汤伏蛟, 等. 三维探地雷达道路隐性病害检测分析与数字化技术综述[J]. 中国公路学报, 2023, 36(3): 1-19.

    WANG Da-wei, LYU Hao-tian, TANG Fu-jiao, et al. Road structural defects detection and digitalization based on 3D ground penetrating radar technology: a state-of-the-art review[J]. China Journal of Highway and Transport, 2023, 36(3): 1-19.
    [24] TRAVASSOS X L, AVILA S L, IDA N. Artificial neural networks and machine learning techniques applied to ground penetrating radar: a review[J]. Applied Computing and Informatics, 2021, 17(2): 296-308.
    [25] MECHBAL Z, KHAMLICHI A. Determination of concrete rebars characteristics by enhanced post-processing of GPR scan raw data[J]. NDT & E International, 2017, 89: 30-39.
    [26] 张军, 陈思茹, 张子琛, 等. 基于GPR和F-K法的桥面隐性病害无损检测方法[J]. 中国公路学报, 2016, 29(7): 110-116.

    ZHANG Jun, CHEN Si-ru, ZHANG Zi-chen, et al. Non-destructive detection method for bridge hidden diseases based on GPR and F-K method[J]. China Journal of Highway and Transport, 2016, 29(7): 110-116.
    [27] XIE X Y, LIU Y J, HUANG H W, et al. Evaluation of grout behind the lining of shield tunnels using ground-penetrating radar in the Shanghai Metro Line, China[J]. Journal of Geophysics and Engineering, 2007, 4(3): 253-261.
    [28] ALSHARAHI G, FAIZE A, LOUZAZNI M, et al. Detection of cavities and fragile areas by numerical methods and GPR application[J]. Journal of Applied Geophysics, 2019, 164: 225-236.
    [29] 朱兆荣, 赵守全, 秦欣, 等. 探地雷达隧道衬砌空洞探测效果模型和现场实体试验研究[J]. 岩土工程学报, 2022, 44(增1): 132-137.

    ZHU Zhao-rong, ZHAO Shou-quan, QIN Xin, et al. Model and field tests on detection effects of tunnel lining cavity by GPR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 132-137.
    [30] 凌同华, 张亮, 刘浩然, 等. 基于小波提升格式理论的隧道衬砌缺陷定量识别分析[J]. 中国公路学报, 2019, 32(12): 197-204, 226.

    LING Tong-hua, ZHANG Liang, LIU Hao-ran, et al. Quantitative identification and analysis of tunnel lining defect based on the wavelet lifting scheme theory[J]. China Journal of Highway and Transport, 2019, 32(12): 197-204, 226.
  • 加载中
图(17)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  53
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-15
  • 录用日期:  2025-06-05
  • 修回日期:  2025-03-13
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回