留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变截面单桩基础桩周软土震陷特性及负摩阻力

张聪 冯忠居 彭建兵 王富春 王溪清 李玉婷

张聪, 冯忠居, 彭建兵, 王富春, 王溪清, 李玉婷. 变截面单桩基础桩周软土震陷特性及负摩阻力[J]. 交通运输工程学报, 2025, 25(4): 124-134. doi: 10.19818/j.cnki.1671-1637.2025.04.009
引用本文: 张聪, 冯忠居, 彭建兵, 王富春, 王溪清, 李玉婷. 变截面单桩基础桩周软土震陷特性及负摩阻力[J]. 交通运输工程学报, 2025, 25(4): 124-134. doi: 10.19818/j.cnki.1671-1637.2025.04.009
ZHANG Cong, FENG Zhong-ju, PENG Jian-bing, WANG Fu-chun, WANG Xi-qing, LI Yu-ting. Seismic subsidence characteristics and negative frictional resistance of soft soil around variable cross-section single pile foundations[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 124-134. doi: 10.19818/j.cnki.1671-1637.2025.04.009
Citation: ZHANG Cong, FENG Zhong-ju, PENG Jian-bing, WANG Fu-chun, WANG Xi-qing, LI Yu-ting. Seismic subsidence characteristics and negative frictional resistance of soft soil around variable cross-section single pile foundations[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 124-134. doi: 10.19818/j.cnki.1671-1637.2025.04.009

变截面单桩基础桩周软土震陷特性及负摩阻力

doi: 10.19818/j.cnki.1671-1637.2025.04.009
基金项目: 

国家自然科学基金项目 52378322

陕西省科协青年人才托举计划 20250461

长安大学中央高校基本科研业务费专项资金 300102215110

福建省交通运输科技项目 202105

详细信息
    作者简介:

    张聪(1994-),男,河南焦作人,长安大学讲师,工学博士,从事桥梁桩基础工程、岩土工程研究

    通讯作者:

    彭建兵(1953-),男,湖北麻城人,长安大学教授,中国科学院院士,工学博士

  • 中图分类号: U443.15

Seismic subsidence characteristics and negative frictional resistance of soft soil around variable cross-section single pile foundations

Funds: 

National Natural Science Foundation of China 52378322

Shaanxi Association for Science and Technology Youth Talent Support Program 20250461

Fundamental Research Funds for the Central Universities, CHD 300102215110

Fujian Provincial Transportation Science and Technology Project 202105

More Information
    Corresponding author: PENG Jian-bing (1953-), male, professor, academician of Chinese Academy of Sciences, PhD, dicexy_1@chd.edu.cn
Article Text (Baidu Translation)
  • 摘要: 为探明地震作用下震陷场地变截面单桩动力响应及负摩阻力特性,以翔安大桥为工程背景,通过大型振动台物理模型试验,建立了变截面单桩-软土动力相互作用模型,开展了0.10g~0.45g 5010波作用下土层震陷特性、桩身加速度、桩顶水平位移及负摩阻力研究,提出了基于震动固结原理的土层震陷量计算公式以及综合考虑软土层厚度和地震动强度的负摩阻力计算公式。研究结果表明:软土震陷量随地震波强度增大而增大,地震波强度为0.45g时,软土震陷量高达0.48 cm;提出的基于震动固结原理的软土震陷量理论计算公式与试验结果一致性较好;变截面单桩基加速度均沿地震波传递方向逐渐增大,且均在桩顶处产生加速度放大效应;桩顶加速度放大系数均大于1,放大效应随加载地震动强度的增大而减小;相同强度地震波作用下,桩端加速度峰值出现时刻早于变截面与桩顶;变截面单桩的桩顶水平位移在地震波加载前期变化比较明显,后期振幅逐渐减弱;变截面单桩负摩阻力出现在软土层以下0~3倍大截面桩径范围内,且随着地震波强度的增大而逐渐增大。综上所述,地震作用下软土震陷场地变截面单桩易产生负摩阻力效应,在工程设计中可通过优化桩基截面设计,降低负摩阻力对桥梁桩基产生的不利影响。

     

  • 图  1  地层分布情况(单位:m)

    Figure  1.  Stratigraphic distribution (unit: m)

    图  2  模型桩制作

    Figure  2.  Model pile fabrication

    图  3  传感器布设(单位:cm)

    Figure  3.  Sensor layout (unit: cm)

    图  4  0.15g 5010波

    Figure  4.  0.15g 5010 wave

    图  5  土层震陷量

    Figure  5.  Seismic subsidence of soil layer

    图  6  理论与试验结果对比

    Figure  6.  Comparison between theoretical and experimental results

    图  7  变截面单桩加速度响应

    Figure  7.  Acceleration response of variable cross-section single pile

    图  8  变截面单桩桩顶加速度及其放大系数

    Figure  8.  Acceleration at pile top of variable cross-section single pile and its amplification factor

    图  9  变截面处加速度时程响应

    Figure  9.  Time-history response of acceleration at variable cross-section

    图  10  变截面单桩桩顶水平位移时程

    Figure  10.  Time-history of horizontal displacement at pile top of variable cross-section single pile

    图  11  变截面单桩负摩阻力

    Figure  11.  Negative frictional resistance of variable cross-section single pile

    表  1  振动台参数

    Table  1.   Shaking table parameters

    台面面积/m2 模型最大载重/t 频率/Hz 最大加速度幅值 最大位移幅值/mm
    5×5 30 0.5~50.0 1g 80
    下载: 导出CSV

    表  2  试验物理量相似常数

    Table  2.   Similarity constants of test physical quantities

    分类 相似常数(模型/原型)
    几何性状 几何尺寸 1/50
    线位移 1/50
    荷载 加速度 1
    重力加速度 1
    材料特征 弹性模量 1/3.5
    应力 1/3.5
    下载: 导出CSV

    表  3  模型桩参数

    Table  3.   Model pile parameters

    桩身及承台材料 桩长/cm 桩径/mm 配筋率/%
    微粒混凝土 90 50(上部),43(下部) 2.4
    下载: 导出CSV

    表  4  土体参数

    Table  4.   Soil parameters

    材料 天然含水量/% 液限/% 密度/(kg·m-3) 孔隙比 黏聚力/kPa 内摩擦角/(°) 渗透系数/(10-7 cm·s-1)
    软土 模型 45.6 40.5 1 770 2.15 8.0 10 1.79
    原型 44.8 41.3 1 820 2.23 7.0 12 1.82
    强风化花岗岩 模型 11.2 2 100 22.5 43
    原型 11.9 2 360 26.6 46
    中风化花岗岩 2 580 90.0 50
    下载: 导出CSV

    表  5  理论计算参数取值

    Table  5.   Theoretical calculation parameter values

    地震动加速度峰值 软土层厚度/cm 软土层重度/(kN·m-3) 压缩系数/MPa 孔隙比 渗透系数/(10-7 cm·s-1)
    0.10g~0.45g 30 18 1 2.15 1.79
    下载: 导出CSV
  • [1] ZHANG C, FENG Z J, GUAN Y H, et al. Study on liquefaction resistance of pile group by shaking table test[J]. Advances in Civil Engineering, 2022, 2022(1): 5074513. doi: 10.1155/2022/5074513
    [2] DONG Y X, FENG Z J, HE J B, et al. Seismic response of a bridge pile foundation during a shaking table test[J]. Shock and Vibration, 2019(1): 10. /1155/2019/9726013.
    [3] DONG Y X, FENG Z J, HU H B, et al. The horizontal bearing capacity of composite concrete-filled steel tube piles[J]. Advances in Civil Engineering, 2020, 2020(1): 3241602. doi: 10.1155/2020/3241602
    [4] ZHANG C C, FENG Z J, ZHANG C, et al. Study on the seismic responses and differences between rock-socketed single pile and pile group foundations under different scour depths[J]. Soil Dynamics and Earthquake Engineering, 2024, 187: 108971. doi: 10.1016/j.soildyn.2024.108971
    [5] 冯忠居, 张聪, 何静斌, 等. 强震作用下群桩基础抗液化性能的振动台试验[J]. 交通运输工程学报, 2021, 21(4): 72-83. doi: 10.19818/j.cnki.1671-1637.2021.04.004

    FENG Zhong-ju, ZHANG Cong, HE Jing-bin, et al. Shaking table test of liquefaction resistance of group piles under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 72-83. doi: 10.19818/j.cnki.1671-1637.2021.04.004
    [6] 冯忠居, 张聪, 何静斌, 等. 强震作用下近断层桥梁桩基动力响应[J]. 交通运输工程学报, 2022, 22(4): 159-169. doi: 10.19818/j.cnki.1671-1637.2022.04.012

    FENG Zhong-ju, ZHANG Cong, HE Jing-bin, et al. Dynamic response of bridge pile foundation near fault under strong earthquake[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 159-169. doi: 10.19818/j.cnki.1671-1637.2022.04.012
    [7] 冯忠居, 徐博熙, 董建松, 等. 震陷场地大直径变截面群桩基础抗震性能[J]. 交通运输工程学报, 2024, 24(6): 80-91. doi: 10.19818/j.cnki.1671-1637.2024.06.005

    FENG Zhong-ju, XU Bo-xi, DONG Jian-song, et al. Seismic performance of large-diameter and variable cross-section pile group foundations in earthquake-induced subsidence site[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 80-91. doi: 10.19818/j.cnki.1671-1637.2024.06.005
    [8] 咸甘玲, 兰景岩, 李哲瀚. 软土地基桩基础抗震研究的若干进展与展望[J]. 应用力学学报, 2024, 41(4): 729-741.

    XIAN Gan-ling, LAN Jing-yan, LI Zhe-han. Advances and prospects of seismic research on pile foundations in soft soil[J]. Chinese Journal of Applied Mechanics, 2024, 41(4): 729-741.
    [9] 杨爱武, 朱燚, 尚英杰. 双向近场地震下结构性软黏土震陷特性研究[J]. 工程地质学报, 2024, 32(1): 227-235.

    YANG Ai-wu, ZHU Yi, SHANG Ying-jie. Study on seismic subsidence characteristics of structural soft clay under bidirectional near-field earthquakes[J]. Journal of Engineering Geology, 2024, 32(1): 227-235.
    [10] 冯忠居, 王伟, 张聪, 等. 震陷土层变化下变截面单、群桩动力响应差异[J]. 上海交通大学学报, 2024, 58(7): 1086-1096.

    FENG Zhong-ju, WANG Wei, ZHANG Cong, et al. Dynamic response difference of single pile and pile group with variable section in variation of seismic subsidence soil layer[J]. Journal of Shanghai Jiaotong University, 2024, 58(7): 1086-1096.
    [11] 张聪, 冯忠居, 王富春, 等. 强震区软弱土层差异厚度下单桩动力响应振动台试验[J]. 岩土力学, 2023, 44(4): 1100-1110.

    ZHANG Cong, FENG Zhong-ju, WANG Fu-chun, et al. Shaking table test of dynamic response of a single pile under different thicknesses of soft soil layers in a strong earthquake area[J]. Rock and Soil Mechanics, 2023, 44(4): 1100-1110.
    [12] 张中杰, 刘磊, 时振昊, 等. 含桩基础地下结构的软黏土场地震陷数值分析[J]. 土木工程学报, 2023, 56(增2): 163-169.

    ZHANG Zhong-jie, LIU Lei, SHI Zhen-hao, et al. Numerical analysis of earthquake-induced settlement of saturated soft clay with pile and underground structure[J]. China Civil Engineering Journal, 2023, 56(S2): 163-169.
    [13] 高广运, 聂春晓, 石超, 等. 多向地震荷载作用下砂土场地震陷分析[J]. 哈尔滨工程大学学报, 2017, 38(7): 1100-1106.

    GAO Guang-yun, NIE Chun-xiao, SHI Chao, et al. Seismic subsidence of sand ground subject to multidirectional earthquake load[J]. Journal of Harbin Engineering University, 2017, 38(7): 1100-1106.
    [14] 袁晓铭, 孙锐, 孟上九. 软弱地基土上建筑物不均匀震陷机理研究[J]. 土木工程学报, 2004(2): 67-72, 77.

    YUAN Xiao-ming, SUN Rui, MENG Shang-jiu. Research on mechanism for earthquake-induced differential settlement of buildings on soft subsoil[J]. China Civil Engineering Journal, 2004(2): 67-72, 77.
    [15] LI P, GU J, LIU Y, et al. The study of soft soil seismic subsidence based on the 3D OpenSees model[J]. Geoenvironmental Disasters, 2022, 9(1): 10. doi: 10.1186/s40677-022-00212-7
    [16] 辜俊儒, 李平, 周春澍. 软土震陷研究现状与展望[J]. 防灾科技学院学报, 2017, 19(2): 32-37.

    GU Jun-ru, LI Ping, ZHOU Chun-shu. Research status and prospect of soft soil seismic subsidence[J]. Journal of Institute of Disaster Prevention, 2017, 19(2): 32-37.
    [17] 辜俊儒, 李平, 田兆阳, 等. 基于OpenSees的地震动对软土震陷影响研究[J]. 地震工程学报, 2019, 41(5): 1339-1346.

    GU Jun-ru, LI Ping, TIAN Zhao-yang, et al. Influence of ground motions on seismic subsidence of soft soil based on OpenSees[J]. China Earthquake Engineering Journal, 2019, 41(5): 1339-1346.
    [18] 汪云龙, 王进, 袁晓铭, 等. 管状地下结构对软土场地浅埋筏式基础震陷影响规律模拟研究[J]. 岩土力学, 2021, 42(12): 3485-3495.

    WANG Yun-long, WANG Jin, YUAN Xiao-ming, et al. Numerical investigation on the influence of underground tubular structure on seismic subsidence of shallow raft foundation in soft soil site[J]. Rock and Soil Mechanics, 2021, 42(12): 3485-3495.
    [19] 冯忠居, 李玉婷, 蔡杰, 等. 地震作用软土震陷特性及变截面群桩动力响应[J]. 湖南大学学报(自然科学版), 2023, 50(9): 109-118.

    FENG Zhong-ju, LI Yu-ting, CAI Jie, et al. Seismic subsidence characteristics of soft soil and dynamic response of pile group with variable cross section[J]. Journal of Hunan University (Natural Sciences), 2023, 50(9): 109-118.
    [20] 冯忠居, 金熙宾, 张聪, 等. 液化土层厚度差异下大直径变截面单桩基础振动台试验[J]. 土木工程学报, 2024, 57(11): 92-105.

    FENG Zhong-ju, JIN Xi-bin, ZHANG Cong, et al. Shaking table test of large diameter single pile foundation with variable section under different liquefied soil thicknesses[J]. China Civil Engineering Journal, 2024, 57(11): 92-105.
    [21] 冯忠居, 李元鹏, 王伟, 等. 不同厚度液化土层大直径变截面六桩基础振动台模型试验研究[J]. 振动工程学报, 2025, 38(3): 595-603.

    FENG Zhong-ju, LI Yuan-peng, WANG Wei, et al. Experimental study on shaking table model of six piles with large diameter and variable section in different thickened soil layers[J]. Journal of Vibration Engineering, 2025, 38(3): 595-603.
    [22] 张聪, 冯忠居, 林路宇, 等. 震陷场地变截面单桩动力特性与损伤评价[J]. 岩土力学, 2024, 45(10): 3037-3046, 3057.

    ZHANG Cong, FENG Zhong-ju, LIN Lu-yu, et al. Dynamic characteristics and damage evaluation of variable-section single pile in a seismic subsidence site[J]. Rock and Soil Mechanics, 2024, 45(10): 3037-3046, 3057.
    [23] 吕西林, 任红梅, 李培振, 等. 液化场地自由场体系的数值分析及振动台试验验证[J]. 岩石力学与工程学报, 2009, 28(增2): 4046-4053.

    LV Xi-lin, REN Hong-mei, LI Pei-zhen, et al. Numerical analysis of free field system in liquefiable site and validation of shaking table tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 4046-4053.
    [24] 凌贤长, 王东升, 王志强, 等. 液化场地桩-土-桥梁结构动力相互作用大型振动台模型试验研究[J]. 土木工程学报, 2004(11): 67-72.

    LING Xian-zhang, WANG Dong-sheng, WANG Zhi-qiang, et al. Large-scale shaking table model test of dynamic soil-pile-bridge structure interaction in ground of liquefaction[J]. China Civil Engineering Journal, 2004(11): 67-72.
    [25] 唐亮, 满孝峰, 丛晟亦, 等. 液化场地桩基地震失效机制: 现状与挑战[J]. 岩土力学, 2023, 44(10): 2979-2996.

    TANG Liang, MAN Xiao-feng, CONG Sheng-yi, et al. Failure mechanism of pile foundations in liquefiable soils under seismic loading: status and challenge[J]. Rock and Soil Mechanics, 2023, 44(10): 2979-2996.
    [26] 李雨润, 闫志晓, 张健. 液化场地群桩基础地震反应离心机试验及损伤数值模型研究[J]. 岩石力学与工程学报, 2023, 42(1): 212-223.

    LI Yu-run, YAN Zhi-xiao, ZHANG Jian. Seismic response of pile group foundations in liquefied sites based on centrifuge test and numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(1): 212-223.
    [27] 梁发云, 梁轩, 张浩. 局部冲刷场地桩基桥梁地震响应简化分析及离心振动台验证[J]. 岩土工程学报, 2021, 43(10): 1771-1780, 1957.

    LIANG Fa-yun, LIANG Xuan, ZHANG Hao. Simplified analysis of dynamic response of pile-supported bridge under local scour and verification by centrifugal shaking tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1771-1780, 1957.
    [28] 周敉, 赵威, 石雄伟, 等. 高烈度软土场地桥梁地震与冲刷联合作用效应研究[J]. 振动与冲击, 2020, 39(8): 88-98.

    ZHOU Mi, ZHAO Wei, SHI Xiong-wei, et al. A study on combined effect of earthquake and scour of bridge in high earthquake-intensity and soft soil site[J]. Journal of Vibration and Shock, 2020, 39(8): 88-98.
    [29] 冯忠居, 王志浩, 张晓光, 等. 软土场地大直径变截面群桩动力响应特性的研究[J]. 公路, 2023, 68(6): 233-241.

    FENG Zhong-ju, WANG Zhi-hao, ZHANG Xiao-guang, et al. Dynamic response characteristics of variable section pile group in soft soil site[J]. Highway, 2023, 68(6): 233-241.
    [30] 冯忠居, 张亮, 张聪, 等. 地震作用下变截面钢管混凝土单桩动力响应[J]. 河北大学学报(自然科学版), 2024, 44(2): 122-130.

    FENG Zhong-ju, ZHANG Liang, ZHANG Cong, et al. Dynamic response of variable section steel tube concrete monopile under earthquake action[J]. Journal of Hebei University (Natural Science Edition), 2024, 44(2): 122-130.
    [31] 岑航, 黄德龙, 宗钟凌, 等. 空间SV波斜入射作用下海相软土场HSCM桩动力响应研究[J]. 工程力学, (2024-07-15), DOI: http://kns.cnki.net/kcms/detail/11.2595.O3.20240711.1451.011.html.

    CEN Hang, HUANG De-long, ZONG Zhong-ling, et al. Dynamic response of HSCM pile in marine soft soil field under the action of SV wave oblique incidence[J]. Engineering Mechanics, (2024-07-15), DOI: http://kns.cnki.net/kcms/detail/11.2595.O3.20240711.1451.011.html.
    [32] 李绍毅. 采用有限元+边界元方法研究非饱和地基中群桩基础的动力阻抗[J]. 岩土力学, 2024, 45(3): 895-907.

    LI Shao-yi. Analysis of the dynamic impedance of group piles foundation in unsaturated ground using BEM+FEM[J]. Rock and Soil Mechanics, 2024, 45(3): 895-907.
    [33] 吕西林, 陈跃庆, 陈波, 等. 结构-地基动力相互作用体系振动台模型试验研究[J]. 地震工程与工程振动, 2000, 20(4): 20-29.

    LV Xi-lin, CHEN Yue-qing, CHEN Bo, et al. Shaking table testing of dynamic soil-structure interaction system[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 20-29.
    [34] 沈德建, 吕西林. 模型试验的微粒混凝土力学性能试验研究[J]. 土木工程学报, 2010, 43(10): 14-21.

    SHEN De-jian, LV Xi-lin. Experimental study on the mechanical property of microconcrete in model test[J]. China Civil Engineering Journal, 2010, 43(10): 14-21.
    [35] 刘金韬, 金晓媚. 单向与双向排水时饱和软黏土固结震陷的计算方法[J]. 科技导报, 2013, 31(17): 15-19.

    LIU Jin-tao, JIN Xiao-mei. Estimation method of consolidation seismic subsidence of saturated soft clayey soil with one-side and two-side drainages[J]. Science and Technology Review, 2013, 31(17): 15-19.
    [36] 黄海峰, 巨能攀, 黄敏, 等. 软岩非线性蠕变损伤模型及其试验研究[J]. 水文地质工程地质, 2017, 44(3): 49-54, 60.

    HUANG Hai-feng, JU Neng-pan, HUANG Min, et al. Nonlinear creep damage model of soft rock and its experimental study[J]. Hydrogeology and Engineering Geology, 2017, 44(3): 49-54, 60.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  75
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-26
  • 录用日期:  2025-04-30
  • 修回日期:  2025-03-21
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回