Formation mechanism and evolution of welding residual stress in thick plate T-joint
-
摘要: 为明确厚板T型接头焊接过程中残余应力的形成机制及其分布特征,通过开展现场T型接头焊接试验,测量了各焊道的应变变化曲线、热循环曲线和熔敷尺寸,并结合ABAQUS有限元软件模拟,采用生死单元技术模拟了多道焊焊接过程,计算了焊接温度场、热变形和残余应力的空间分布;根据试验与数值模拟的结果,结合已有焊接残余应力理论,研究了厚板T型接头焊接残余应力的形成机理;取T型接头中部截面及特定路径分析了焊接残余应力的演变过程及分布情况。研究结果表明:在焊接过程中,模拟与试验结果的热循环曲线均呈现阶梯式上升,母材的热变形表现出周期性变化;焊缝区域分布的残余应力以三向受拉为主,焊缝纵向残余应力分量最大值可达915 MPa,随着焊道层数的增加,拉应力峰值逐渐升高,且其分布位置随焊道层数的增加向外扩展,而热影响区内的母材则主要承受压应力;沿板厚方向,纵向及横向的残余应力分量均呈现出“C”形分布特征,残余应力的分布面积和峰值同样随焊道层数的增加而增大,最大可达486 MPa;压缩残余塑性应变为焊接残余应力形成的主因,对于厚板的多层多道焊,外层焊道对内层焊道的回火效应以及总体的焊接顺序显著影响了其焊接残余应力形成过程与最终分布。Abstract: To clarify the formation mechanism and distribution characteristics of residual stress during the welding process of thick plate T-joint, welding tests of T-joints were conducted on-site. Strain variation curves, thermal cycle curves, and deposition sizes of each weld pass were measured. Along with the ABAQUS finite element software used for simulations, the element birth and death technique was employed to simulate the multi-pass welding process. The welding temperature field, thermal deformation, and spatial distribution of residual stress were calculated. Based on the test and numerical simulation results, combined with existing theories of welding residual stress, the formation mechanism of welding residual stress in thick plate T-joint was studied. The central cross-section of the T-joint and specific paths were selected to analyze the evolution and distribution of welding residual stress. The results show that the thermal cycle curves from both simulations and experiments show a stepwise increase, and the thermal deformation of the base metal exhibits periodic changes. The residual stress in the weld region is mainly tensile in three directions. The maximum longitudinal residual stress in the weld reaches 915 MPa. As the number of weld passes increases, the peak tensile stress rises, with its distribution position shifting outward. The base metal in the heat-affected zone mainly bears compressive stress. Along the plate thickness direction, the longitudinal and transverse residual stress components show a C-shaped distribution. The distribution area and peak value of residual stress also increase with the number of weld passes, reaching a maximum of 486 MPa. Compressive residual plastic strain is the main cause of welding residual stress. For multi-layer and multi-pass welding of thick plates, the tempering effect of the outer weld passes on the inner ones, as well as the overall welding sequence, significantly affects the formation process and final distribution of the welding residual stress.
-
表 1 Q500qE钢化学成分表(质量分数)
Table 1. Chemical composition of Q500qE steel (mass fraction)
化学成分 C Si Mn P S Ni Nb Cr Cu Pcm 质量分数/% 0.05 0.25 1.59 0.012 0.001 5 0.32 0.025 0.18 0.02 0.17 表 2 焊缝各层焊道数量
Table 2. Number of passes of each layer of weld
层数 1 2 3 4 5 6 7 8 焊道数 1 2 3 4 4 5 5 6 -
[1] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97.Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. [2] ZHANG H, LI R, YANG S X, et al. Experimental and simulation study on welding characteristics and parameters of gas metal arc welding for Q345qD thick-plate steel[J]. Materials, 2023, 16(17): 5944. doi: 10.3390/ma16175944 [3] FEUCHT T, WALDSCHMITT B, LANGE P D J, et al. Additive manufacturing of a bridge in situ[J]. Steel Construction, 2022, 15(2): 100-110. doi: 10.1002/stco.202100045 [4] 孙悦, 朱伟庆, 贾金青, 等. 型钢高强混凝土柱破坏模式与变形特征研究[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(4): 351-359.SUN Yue, ZHU Wei-qing, JIA Jin-qing, et al. Failure modes and deformation characteristics of steel reinforced high-strength concrete columns[J]. Journal of Inner Mongolia University of Technology(Natural Science Edition), 2024, 43(4): 351-359. [5] 沈翀, 苏庆田, 陈友生. 钢桥中错位厚板十字接头的力学性能与补强方法[J]. 东北大学学报(自然科学版), 2024, 45(5): 729-737.SHEN Chong, SU Qing-tian, CHEN You-sheng. Mechanical properties and reinforcement method of misaligned thick plate cross joints in steel bridge[J]. Journal of Northeastern University (Natural Science), 2024, 45(5): 729-737. [6] 王春生, 冒宇博, 李璞玉, 等. 斜拉桥钢桥面板顶板-U肋-横隔板过焊孔细节群数字疲劳试验[J]. 交通运输工程学报, 2022, 22(6): 67-83. doi: 10.19818/j.cnki.1671-1637.2022.06.004WANG Chun-sheng, MAO Yu-bo, LI Pu-yu, et al. Digital fatigue test of detail group at deck-U rib-diaphragm access hole of steel bridge deck in cable stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 67-83. doi: 10.19818/j.cnki.1671-1637.2022.06.004 [7] 张清华, 李明哲, 李俊, 等. 在役钢桥面板纵肋与顶板焊根疲劳裂纹内焊加固方法[J]. 交通运输工程学报, 2024, 24(1): 85-99. doi: 10.19818/j.cnki.1671-1637.2022.06.004ZHANG Qing-hua, LI Ming-zhe, LI Jun, et al. Internal welding reinforcement method for fatigue crack at weld root on rib-to-deck of in-service steel bridge deck[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 85-99. doi: 10.19818/j.cnki.1671-1637.2022.06.004 [8] WU C B, KIM J W. Analysis of welding residual stress formation behavior during circumferential TIG welding of a pipe[J]. Thin-walled Structures, 2018, 132(2): 421-430. [9] 任森栋, 毕涛, 李索, 等. P92钢多层多道焊接接头残余应力的有限元模拟[J]. 机械工程材料, 2019, 43(11): 42-46.REN Sen-dong, BI Tao, LI Suo, et al. Finite Element simulation of residual stress in multi-layer and multi-pass welded joint of P92 steel[J]. Materials for Mechanical Engineering, 2019, 43(11): 42-46. [10] LI S, REN S D, ZHANG Y B, et al. Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints[J]. Journal of Materials Processing Technology, 2017, 244: 240-252. doi: 10.1016/j.jmatprotec.2017.01.033 [11] ZHANG Y L, LIU X C, ZHOU Y, et al. Influence of welding method on residual stress and metallography of a mild steel welded butt-joint plate[J]. Journal of Constructional Steel Research, 2022, 199: 107640. doi: 10.1016/j.jcsr.2022.107640 [12] WAN Y, JIANG W C, SONG M, et al. Distribution and formation mechanism of residual stress in duplex stainless steel weld joint by neutron diffraction and electron backscatter diffraction[J]. Materials & Design, 2019, 181: 108086. [13] HUANG L J, HUA X M, WU D S, et al. A study on the metallurgical and mechanical properties of a GMAW-welded Al-Mg alloy with different plate thicknesses[J]. Journal of Manufacturing Processes, 2019, 37: 438-445. [14] 强斌. 桥梁钢厚板对接焊焊接残余应力空间分布及调控技术研究[D]. 成都: 西南交通大学, 2017.QIANG Bin. Research on spatial distribution and control technology of residual stresses in butt welding for bridge steel thick plates[D]. Chengdu: Southwest Jiaotong University, 2017. [15] 强斌, 李亚东, 顾颖, 等. 钢桁梁桥主桁杆件厚板焊接残余应力空间分布试验研究[J]. 铁道学报, 2019, 41(3): 128-133. [16] 张庆亚. 海洋平台用高强钢厚板对接接头的焊接残余应力及力学性能研究[D]. 武汉: 华中科技大学, 2022.ZHANG Qing. Research on welding residual stress and mechanical performance of high strength steel thick-plate buttwelded joint for offshore platform[D]. Wuhan: Huazhong University of Science and Technology, 2022. [17] 刘川, 沈嘉斌, 陈东俊, 等. 大厚板内部焊接残余应力分布实验研究[J]. 船舶力学, 2020, 24(4): 484-491.LIU Chuan, SHEN Jia-bin, CHEN Dong-jun, et al. Measurement of internal welding residual stress distributions in a thick welded plate[J]. Journal of Ship Mechanics, 2020, 24(4): 484-491. [18] 郭利明, 苏永贵, 杜景余, 等. 多边形钢厚板钢桥多焊缝焊接残余应力分析[J]. 建筑结构, 2023, 53(增1): 1517-1522.GUO Li-ming, SU Yong-gui, DU Jing-yu, et al. Analysis of welding residual stress of polygonal thick steel plate of steel bridge with multiple welds[J]. Building Structure, 2023, 53(S1): 1517-1522. [19] ZHANG Y L, WANG Y Q. The influence of welding mechanical boundary condition on the residual stress and distortion of a stiffened-panel[J]. Marine Structures, 2019, 65: 259-270. doi: 10.1016/j.marstruc.2019.02.007 [20] XING Y H, WANG W Y, AL-AZZANI H. Assessment of thermal properties of various types of high-strength steels at elevated temperatures[J]. Fire Safety Journal, 2021, 122: 103348. doi: 10.1016/j.firesaf.2021.103348 [21] KUEPFERLE J, WILZER J, WEBER S, et al. Thermo-physical properties of heat-treatable steels in the temperature range relevant for hot-stamping applications[J]. Journal of Materials Science, 2015, 50: 2594-2604. doi: 10.1007/s10853-015-8829-z [22] 兰亮云, 邵国庆, 张一婷, 等. 焊接顺序对Q690钢T型接头残余应力和变形的影响[J]. 东北大学学报(自然科学版), 2020, 41(12): 1741-1746.LAN Liang-yun, SHAO Guo-qing, ZHANG Yi-ting, et al. Influence of welding sequence on residual stress and deformation of T-joint of Q690 steel[J]. Journal of Northeastern University (Natural Science), 2020, 41(12): 1741-1746. [23] 武晓芳, 侯继军, 董俊慧. 冰晶石对TC4激光焊焊缝成形和组织性能的影响[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(5): 425-433.WU Xiao-fang, HOU Ji-jun, DONG Jun-hui. Effect of cryolite on weld formation, microstructure and mechanical properties of tc4 laser welded seams[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2024, 43(5): 425-433. [24] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299-305. doi: 10.1007/BF02667333 [25] KNOEDEL P, GKATZOGIANNIS S, UMMENHOFER T. Practical aspects of welding residual stress simulation[J]. Journal of Constructional Steel Research, 2017, 132: 83-96. doi: 10.1016/j.jcsr.2017.01.010 [26] 游敏, 郑小玲, 余海洲. 关于焊接残余应力形成机制的探讨[J]. 焊接学报, 2003, 24(2): 51-58.YOU Min, ZHENG Xiao-ling, YU Hai-zhou. Discussion and investigation on mechanism of welding residual stresses in mild steel[J]. Transactions of the China Welding Institution, 2003, 24(2): 51-58. [27] 王者昌. 焊接应力变形原理若干问题的探讨(二)[J]. 焊接学报, 2008, 29(7): 69-72, 116.WANG Zhe-chang. Discussion on principle of welding stress and distortion(2)[J]. Transactions of the China Welding Institution, 2008, 29(7): 69-72, 116. [28] 汪建华, 陆皓. 焊接残余应力形成机制与消除原理若干问题的讨论[J]. 焊接学报, 2002, 23(3): 75-79.WANG Jian-hua, LU Hao. Some discussions on principle of causing and relieving welding residual stress[J]. Transactions of the China Welding Institution, 2002, 23(3): 75-79. [29] PERIC M, NIETIC S, GARASIC I, et al. Numerical calculation and experimental measurement of temperatures and welding residual stresses in a thick-walled T-joint structure[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(1): 313-322. doi: 10.1007/s10973-019-09231-3 [30] 许波, 刘永健, 朱伟庆, 等. 焊钉锈蚀后钢-混组合梁抗弯承载力简化计算方法[J]. 交通运输工程学报, 2019, 19(2): 25-35. doi: 10.19818/j.cnki.1671-1637.2019.02.003XU Bo, LIU Yong-jian, ZHU Wei-qing, et al. Simplified method of calculating flexural capacity of steel-concrete composite beam after stud corrosion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 25-35. doi: 10.19818/j.cnki.1671-1637.2019.02.003 [31] GANNON L, LIU Y, PEGG N, et al. Effect of welding sequence on residual stress and distortion in flat-bar stiffened plates[J]. Marine Structures, 2010, 23(3): 385-404. doi: 10.1016/j.marstruc.2010.05.002 [32] AMIRREZA K, ARMIN RAHMATI D. Effects of welding parameters and welding sequence on residual stress and distortion in Al6061-T6 aluminum alloy for T-shaped welded joint[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 76-89. doi: 10.1016/S1003-6326(19)65181-2 [33] 周绪红, 朋茜, 秦凤江, 等. 钢桥面板顶板与纵肋连接焊根位置疲劳损伤特征[J]. 交通运输工程学报, 2018, 18(1): 1-12. doi: 10.19818/j.cnki.1671-1637.2018.01.001ZHOU Xu-hong, PENG Qian, QIN Feng-jiang, et al. Fatigue damage characteristics of rib-to-deck weld root on orthotropic steel bridge deck[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 1-12. doi: 10.19818/j.cnki.1671-1637.2018.01.001 [34] ZHU Q, LEI Y C, WANG Y L, et al. Microstructure and stress distribution analysis of T-joint of clam steel[J]. Journal of Fusion Energy, 2015, 34(3): 540-544. doi: 10.1007/s10894-014-9837-8 -
下载: