留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

厚板T型接头焊接残余应力的形成机制与演变过程

刘小光 朱伟庆 周波 余琪 张毅毅 王浩

刘小光, 朱伟庆, 周波, 余琪, 张毅毅, 王浩. 厚板T型接头焊接残余应力的形成机制与演变过程[J]. 交通运输工程学报, 2025, 25(4): 179-189. doi: 10.19818/j.cnki.1671-1637.2025.04.013
引用本文: 刘小光, 朱伟庆, 周波, 余琪, 张毅毅, 王浩. 厚板T型接头焊接残余应力的形成机制与演变过程[J]. 交通运输工程学报, 2025, 25(4): 179-189. doi: 10.19818/j.cnki.1671-1637.2025.04.013
LIU Xiao-guang, ZHU Wei-qing, ZHOU Bo, YU Qi, ZHANG Yi-yi, WANG Hao. Formation mechanism and evolution of welding residual stress in thick plate T-joint[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 179-189. doi: 10.19818/j.cnki.1671-1637.2025.04.013
Citation: LIU Xiao-guang, ZHU Wei-qing, ZHOU Bo, YU Qi, ZHANG Yi-yi, WANG Hao. Formation mechanism and evolution of welding residual stress in thick plate T-joint[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 179-189. doi: 10.19818/j.cnki.1671-1637.2025.04.013

厚板T型接头焊接残余应力的形成机制与演变过程

doi: 10.19818/j.cnki.1671-1637.2025.04.013
基金项目: 

国家自然科学基金项目 51508027

陕西省高校科协青年人才托举计划 20180409

长安大学中央高校基本科研业务费重点研究方向专项项目 300102214916

详细信息
    作者简介:

    刘小光(1975-),男,陕西临潼人,长安大学工学博士研究生,从事钢结构桥梁领域的研究

    通讯作者:

    朱伟庆(1987-),男,湖南娄底人,长安大学教授,工学博士

  • 中图分类号: U441.5

Formation mechanism and evolution of welding residual stress in thick plate T-joint

Funds: 

National Natural Science Foundation of China 51508027

Young Talent Fund of Association for Science and Technology in Shaanxi 20180409

Fundamental Research Funds for the Central Universities, CHD 300102214916

More Information
Article Text (Baidu Translation)
  • 摘要: 为明确厚板T型接头焊接过程中残余应力的形成机制及其分布特征,通过开展现场T型接头焊接试验,测量了各焊道的应变变化曲线、热循环曲线和熔敷尺寸,并结合ABAQUS有限元软件模拟,采用生死单元技术模拟了多道焊焊接过程,计算了焊接温度场、热变形和残余应力的空间分布;根据试验与数值模拟的结果,结合已有焊接残余应力理论,研究了厚板T型接头焊接残余应力的形成机理;取T型接头中部截面及特定路径分析了焊接残余应力的演变过程及分布情况。研究结果表明:在焊接过程中,模拟与试验结果的热循环曲线均呈现阶梯式上升,母材的热变形表现出周期性变化;焊缝区域分布的残余应力以三向受拉为主,焊缝纵向残余应力分量最大值可达915 MPa,随着焊道层数的增加,拉应力峰值逐渐升高,且其分布位置随焊道层数的增加向外扩展,而热影响区内的母材则主要承受压应力;沿板厚方向,纵向及横向的残余应力分量均呈现出“C”形分布特征,残余应力的分布面积和峰值同样随焊道层数的增加而增大,最大可达486 MPa;压缩残余塑性应变为焊接残余应力形成的主因,对于厚板的多层多道焊,外层焊道对内层焊道的回火效应以及总体的焊接顺序显著影响了其焊接残余应力形成过程与最终分布。

     

  • 图  1  节点板-上弦杆顶板T形接头与接头焊缝坡口

    Figure  1.  Gusset plate-top chord T-joint and joint weld groove

    图  2  传感器测点布置示意(单位:mm)

    Figure  2.  Layout of sensor measuring points (unit: mm)

    图  3  已覆盖隔热石棉的传感器布置

    Figure  3.  Layout of sensors covered with insulation asbestos

    图  4  模型边界条件与焊道分布

    Figure  4.  Model boundary conditions and weld distribution

    图  5  采用过度网格的局部模型网格划分

    Figure  5.  Local model meshing with excessive meshes

    图  6  Q500qE钢的热力学参数

    Figure  6.  Thermophysical parameters of Q500qE steel

    图  7  双椭球热源模型

    Figure  7.  Double ellipsoid heat source model

    图  8  模拟与试验的部分道焊熔池对比

    Figure  8.  Comparison of simulated and experimental partial weld pools

    图  9  温度测点在前4层焊道内的热循环曲线

    Figure  9.  Thermal cycle curves of temperature measuring point in the first four layers of passes

    图  10  部分焊道焊接温度场

    Figure  10.  Temperature field of partial passes

    图  11  第4道焊热源在经过测点时的时间-应变曲线

    Figure  11.  Time-strain curves of the fourth welding heat source when passing through the measuring point

    图  12  热源经过时应变测点处的母材变形过程

    Figure  12.  Deformation process of base metal at strain measuring point when heat source passes through

    图  13  焊接热影响区在T型接头内的覆盖范围

    Figure  13.  Coverage of heat-affected zone in T-joint

    图  14  以压缩塑性应变为主因的残余应力产生过程

    Figure  14.  Residual stress generation process dominated by compressive plastic strain

    图  15  T型接头中部截面4个阶段的残余应力分布云图

    Figure  15.  Cloud graphs of residual stress distribution in four stages of the central cross-section of T-joint

    图  16  路径位置示意

    Figure  16.  Schematic of path location

    图  17  路径1上残余应力的演变过程

    Figure  17.  Residual stress variation process on path 1

    图  18  路径2上残余应力的演变过程

    Figure  18.  Residual stress variation process on path 2

    表  1  Q500qE钢化学成分表(质量分数)

    Table  1.   Chemical composition of Q500qE steel (mass fraction)

    化学成分 C Si Mn P S Ni Nb Cr Cu Pcm
    质量分数/% 0.05 0.25 1.59 0.012 0.001 5 0.32 0.025 0.18 0.02 0.17
    下载: 导出CSV

    表  2  焊缝各层焊道数量

    Table  2.   Number of passes of each layer of weld

    层数 1 2 3 4 5 6 7 8
    焊道数 1 2 3 4 4 5 5 6
    下载: 导出CSV
  • [1] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97.

    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97.
    [2] ZHANG H, LI R, YANG S X, et al. Experimental and simulation study on welding characteristics and parameters of gas metal arc welding for Q345qD thick-plate steel[J]. Materials, 2023, 16(17): 5944. doi: 10.3390/ma16175944
    [3] FEUCHT T, WALDSCHMITT B, LANGE P D J, et al. Additive manufacturing of a bridge in situ[J]. Steel Construction, 2022, 15(2): 100-110. doi: 10.1002/stco.202100045
    [4] 孙悦, 朱伟庆, 贾金青, 等. 型钢高强混凝土柱破坏模式与变形特征研究[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(4): 351-359.

    SUN Yue, ZHU Wei-qing, JIA Jin-qing, et al. Failure modes and deformation characteristics of steel reinforced high-strength concrete columns[J]. Journal of Inner Mongolia University of Technology(Natural Science Edition), 2024, 43(4): 351-359.
    [5] 沈翀, 苏庆田, 陈友生. 钢桥中错位厚板十字接头的力学性能与补强方法[J]. 东北大学学报(自然科学版), 2024, 45(5): 729-737.

    SHEN Chong, SU Qing-tian, CHEN You-sheng. Mechanical properties and reinforcement method of misaligned thick plate cross joints in steel bridge[J]. Journal of Northeastern University (Natural Science), 2024, 45(5): 729-737.
    [6] 王春生, 冒宇博, 李璞玉, 等. 斜拉桥钢桥面板顶板-U肋-横隔板过焊孔细节群数字疲劳试验[J]. 交通运输工程学报, 2022, 22(6): 67-83. doi: 10.19818/j.cnki.1671-1637.2022.06.004

    WANG Chun-sheng, MAO Yu-bo, LI Pu-yu, et al. Digital fatigue test of detail group at deck-U rib-diaphragm access hole of steel bridge deck in cable stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 67-83. doi: 10.19818/j.cnki.1671-1637.2022.06.004
    [7] 张清华, 李明哲, 李俊, 等. 在役钢桥面板纵肋与顶板焊根疲劳裂纹内焊加固方法[J]. 交通运输工程学报, 2024, 24(1): 85-99. doi: 10.19818/j.cnki.1671-1637.2022.06.004

    ZHANG Qing-hua, LI Ming-zhe, LI Jun, et al. Internal welding reinforcement method for fatigue crack at weld root on rib-to-deck of in-service steel bridge deck[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 85-99. doi: 10.19818/j.cnki.1671-1637.2022.06.004
    [8] WU C B, KIM J W. Analysis of welding residual stress formation behavior during circumferential TIG welding of a pipe[J]. Thin-walled Structures, 2018, 132(2): 421-430.
    [9] 任森栋, 毕涛, 李索, 等. P92钢多层多道焊接接头残余应力的有限元模拟[J]. 机械工程材料, 2019, 43(11): 42-46.

    REN Sen-dong, BI Tao, LI Suo, et al. Finite Element simulation of residual stress in multi-layer and multi-pass welded joint of P92 steel[J]. Materials for Mechanical Engineering, 2019, 43(11): 42-46.
    [10] LI S, REN S D, ZHANG Y B, et al. Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints[J]. Journal of Materials Processing Technology, 2017, 244: 240-252. doi: 10.1016/j.jmatprotec.2017.01.033
    [11] ZHANG Y L, LIU X C, ZHOU Y, et al. Influence of welding method on residual stress and metallography of a mild steel welded butt-joint plate[J]. Journal of Constructional Steel Research, 2022, 199: 107640. doi: 10.1016/j.jcsr.2022.107640
    [12] WAN Y, JIANG W C, SONG M, et al. Distribution and formation mechanism of residual stress in duplex stainless steel weld joint by neutron diffraction and electron backscatter diffraction[J]. Materials & Design, 2019, 181: 108086.
    [13] HUANG L J, HUA X M, WU D S, et al. A study on the metallurgical and mechanical properties of a GMAW-welded Al-Mg alloy with different plate thicknesses[J]. Journal of Manufacturing Processes, 2019, 37: 438-445.
    [14] 强斌. 桥梁钢厚板对接焊焊接残余应力空间分布及调控技术研究[D]. 成都: 西南交通大学, 2017.

    QIANG Bin. Research on spatial distribution and control technology of residual stresses in butt welding for bridge steel thick plates[D]. Chengdu: Southwest Jiaotong University, 2017.
    [15] 强斌, 李亚东, 顾颖, 等. 钢桁梁桥主桁杆件厚板焊接残余应力空间分布试验研究[J]. 铁道学报, 2019, 41(3): 128-133.
    [16] 张庆亚. 海洋平台用高强钢厚板对接接头的焊接残余应力及力学性能研究[D]. 武汉: 华中科技大学, 2022.

    ZHANG Qing. Research on welding residual stress and mechanical performance of high strength steel thick-plate buttwelded joint for offshore platform[D]. Wuhan: Huazhong University of Science and Technology, 2022.
    [17] 刘川, 沈嘉斌, 陈东俊, 等. 大厚板内部焊接残余应力分布实验研究[J]. 船舶力学, 2020, 24(4): 484-491.

    LIU Chuan, SHEN Jia-bin, CHEN Dong-jun, et al. Measurement of internal welding residual stress distributions in a thick welded plate[J]. Journal of Ship Mechanics, 2020, 24(4): 484-491.
    [18] 郭利明, 苏永贵, 杜景余, 等. 多边形钢厚板钢桥多焊缝焊接残余应力分析[J]. 建筑结构, 2023, 53(增1): 1517-1522.

    GUO Li-ming, SU Yong-gui, DU Jing-yu, et al. Analysis of welding residual stress of polygonal thick steel plate of steel bridge with multiple welds[J]. Building Structure, 2023, 53(S1): 1517-1522.
    [19] ZHANG Y L, WANG Y Q. The influence of welding mechanical boundary condition on the residual stress and distortion of a stiffened-panel[J]. Marine Structures, 2019, 65: 259-270. doi: 10.1016/j.marstruc.2019.02.007
    [20] XING Y H, WANG W Y, AL-AZZANI H. Assessment of thermal properties of various types of high-strength steels at elevated temperatures[J]. Fire Safety Journal, 2021, 122: 103348. doi: 10.1016/j.firesaf.2021.103348
    [21] KUEPFERLE J, WILZER J, WEBER S, et al. Thermo-physical properties of heat-treatable steels in the temperature range relevant for hot-stamping applications[J]. Journal of Materials Science, 2015, 50: 2594-2604. doi: 10.1007/s10853-015-8829-z
    [22] 兰亮云, 邵国庆, 张一婷, 等. 焊接顺序对Q690钢T型接头残余应力和变形的影响[J]. 东北大学学报(自然科学版), 2020, 41(12): 1741-1746.

    LAN Liang-yun, SHAO Guo-qing, ZHANG Yi-ting, et al. Influence of welding sequence on residual stress and deformation of T-joint of Q690 steel[J]. Journal of Northeastern University (Natural Science), 2020, 41(12): 1741-1746.
    [23] 武晓芳, 侯继军, 董俊慧. 冰晶石对TC4激光焊焊缝成形和组织性能的影响[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(5): 425-433.

    WU Xiao-fang, HOU Ji-jun, DONG Jun-hui. Effect of cryolite on weld formation, microstructure and mechanical properties of tc4 laser welded seams[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2024, 43(5): 425-433.
    [24] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299-305. doi: 10.1007/BF02667333
    [25] KNOEDEL P, GKATZOGIANNIS S, UMMENHOFER T. Practical aspects of welding residual stress simulation[J]. Journal of Constructional Steel Research, 2017, 132: 83-96. doi: 10.1016/j.jcsr.2017.01.010
    [26] 游敏, 郑小玲, 余海洲. 关于焊接残余应力形成机制的探讨[J]. 焊接学报, 2003, 24(2): 51-58.

    YOU Min, ZHENG Xiao-ling, YU Hai-zhou. Discussion and investigation on mechanism of welding residual stresses in mild steel[J]. Transactions of the China Welding Institution, 2003, 24(2): 51-58.
    [27] 王者昌. 焊接应力变形原理若干问题的探讨(二)[J]. 焊接学报, 2008, 29(7): 69-72, 116.

    WANG Zhe-chang. Discussion on principle of welding stress and distortion(2)[J]. Transactions of the China Welding Institution, 2008, 29(7): 69-72, 116.
    [28] 汪建华, 陆皓. 焊接残余应力形成机制与消除原理若干问题的讨论[J]. 焊接学报, 2002, 23(3): 75-79.

    WANG Jian-hua, LU Hao. Some discussions on principle of causing and relieving welding residual stress[J]. Transactions of the China Welding Institution, 2002, 23(3): 75-79.
    [29] PERIC M, NIETIC S, GARASIC I, et al. Numerical calculation and experimental measurement of temperatures and welding residual stresses in a thick-walled T-joint structure[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(1): 313-322. doi: 10.1007/s10973-019-09231-3
    [30] 许波, 刘永健, 朱伟庆, 等. 焊钉锈蚀后钢-混组合梁抗弯承载力简化计算方法[J]. 交通运输工程学报, 2019, 19(2): 25-35. doi: 10.19818/j.cnki.1671-1637.2019.02.003

    XU Bo, LIU Yong-jian, ZHU Wei-qing, et al. Simplified method of calculating flexural capacity of steel-concrete composite beam after stud corrosion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 25-35. doi: 10.19818/j.cnki.1671-1637.2019.02.003
    [31] GANNON L, LIU Y, PEGG N, et al. Effect of welding sequence on residual stress and distortion in flat-bar stiffened plates[J]. Marine Structures, 2010, 23(3): 385-404. doi: 10.1016/j.marstruc.2010.05.002
    [32] AMIRREZA K, ARMIN RAHMATI D. Effects of welding parameters and welding sequence on residual stress and distortion in Al6061-T6 aluminum alloy for T-shaped welded joint[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 76-89. doi: 10.1016/S1003-6326(19)65181-2
    [33] 周绪红, 朋茜, 秦凤江, 等. 钢桥面板顶板与纵肋连接焊根位置疲劳损伤特征[J]. 交通运输工程学报, 2018, 18(1): 1-12. doi: 10.19818/j.cnki.1671-1637.2018.01.001

    ZHOU Xu-hong, PENG Qian, QIN Feng-jiang, et al. Fatigue damage characteristics of rib-to-deck weld root on orthotropic steel bridge deck[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 1-12. doi: 10.19818/j.cnki.1671-1637.2018.01.001
    [34] ZHU Q, LEI Y C, WANG Y L, et al. Microstructure and stress distribution analysis of T-joint of clam steel[J]. Journal of Fusion Energy, 2015, 34(3): 540-544. doi: 10.1007/s10894-014-9837-8
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  49
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 录用日期:  2025-03-30
  • 修回日期:  2025-02-08
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回