Foreign object impact resistance of GFRP plates and polyurea reinforcement characteristics
Article Text (Baidu Translation)
-
摘要: 针对高速列车玻璃钢外包围结构抗异物冲击性能提升需求,开展了聚脲增强玻璃钢复合材料的力学特性与冲击损伤机理研究;通过准静态拉伸试验测定了聚脲和玻璃钢材料的力学性能参数;基于空气炮冲击试验装置,分别采用直径30 mm冰球(模拟冰雹)和直径24.5 mm铝球(模拟砾石)作为冲击物,对3 mm厚玻璃钢板及其不同聚脲涂层厚度(2.5、3.0、4.5、5.0 mm)的涂覆板进行了冲击试验;采用高速摄影记录冲击过程,用以分析冲击变形序列、损伤演化规律及失效模式;运用扫描电子显微镜对严重损伤试样进行微观形貌表征,揭示了其损伤机理。研究结果表明:聚脲材料呈现高延展性特征(断裂应变为2.35),玻璃钢表现出高强度特性(抗拉强度为141.4 MPa);对于3 mm厚玻璃钢板,冰球冲击轻微损伤临界速度为145.3 m·s-1,涂覆2.5 mm聚脲后临界速度提升至162.6 m·s-1以上,至少提升11.9%;铝球冲击时,未涂覆玻璃钢板的轻微损伤和严重损伤临界速度分别为73.2、88.8 m·s-1,涂覆4.5 mm聚脲后分别提升至88.7、119.2 m·s-1,提升幅度达21.3%和34.4%;聚脲涂层厚度从2.5 mm增加到4.5 mm时,铝球回弹速度从13.15 m·s-1降至11.92 m·s-1,铝球穿透后残余速度从21.1 m·s-1降至16.9 m·s-1;扫描电镜分析显示,聚脲涂层能有效保持损伤区域玻璃纤维的结构完整性;涂层厚度增加至3 mm后,轻微损伤临界速度提升效应趋于饱和,但严重损伤临界速度仍可继续提高。研究成果为高速列车轻量化结构抗冲击设计提供了涂层厚度优化依据。Abstract: In response to the demand for improving the impact resistance performance of glass fiber reinforced plastic (GFRP) shell structures of high-speed trains against foreign object impacts, the mechanical characteristics and impact damage mechanisms of polyurea-reinforced GFRP composites were researched. The mechanical performance parameters of polyurea and GFRP materials were determined through quasi-static tensile tests. Based on an air cannon impact test apparatus, impact tests were performed on 3 mm-thick GFRP plates and GFRP plates coated with different polyurea layers of varying thicknesses (2.5, 3.0, 4.5, and 5.0 mm), using ice balls with a diameter of 30 mm (simulating hail) and aluminum balls with a diameter of 24.5 mm (simulating gravel) as impactors. During the test process, high-speed photography was employed to record the impact process. The impact deformation sequences, damage evolution patterns, and failure modes were analyzed. Scanning electron microscopy was utilized to characterize the microscopic morphology of severely damaged specimens to reveal their damage mechanisms. Research results indicate that polyurea material exhibits high ductility (fracture strain of 2.35), while GFRP demonstrates high strength properties (tensile strength of 141.4 MPa). For 3 mm-thick GFRP plates, the critical velocity for slight damage under ice ball impact is 145.3 m·s-1, which is increased to above 162.6 m·s-1 after coating with 2.5 mm polyurea, representing an improvement of at least 11.9%. Under aluminum ball impact, the critical velocities for slight damage and severe damage of uncoated GFRP plates are 73.2 m·s-1 and 88.8 m·s-1, respectively, which are increased to 88.7 m·s-1 and 119.2 m·s-1 after coating with 4.5 mm polyurea, representing improvements of 21.3% and 34.4%. When the polyurea coating thickness is increased from 2.5 mm to 4.5 mm, the aluminum ball rebound velocity is reduced from 13.15 m·s-1 to 11.92 m·s-1, and the residual velocity after aluminum ball penetration is decreased from 21.1 m·s-1 to 16.9 m·s-1. Scanning electron microscopy analysis reveals that the polyurea coating effectively maintains the structural integrity of glass fibers in the damage zone. When the coating thickness increases to 3 mm, the improvement in critical velocity for slight damage tends toward a plateau, but the critical velocity for severe damage can still be further improved. The findings provide a basis for optimizing coating thickness in the impact-resistant design of lightweight structures for high-speed trains.
-
-
[1] 姚曙光, 周亿莉, 许平, 等. 轻量化高速列车制动盘材料-结构研究进展[J]. 中南大学学报(自然科学版), 2024, 55(6): 2414-2431.YAO Shu-guang, ZHOU Yi-li, XU Ping, et al. Progress of material-structure research on brake discs for lightweight high-speed trains[J]. Journal of Central South University (Science and Technology), 2024, 55(6): 2414-2431. [2] 周晏云, 吴伟萍, 陈钰, 等. 纤维复合材料在轨道车辆中的应用[J]. 纤维复合材料, 2024, 41(2): 104-107.ZHOU Yan-yun, WU Wei-ping, CHEN Yu, et al. Application of fiber composites in rail vehicles[J]. Fiber Composites, 2024, 41(2): 104-107. [3] 李兴元, 王悦东, 王剑. 动车组车头玻璃钢外壳强度有限元分析[J]. 农业装备与车辆工程, 2017, 55(10): 58-61.LI Xing-yuan, WANG Yue-dong, WANG Jian. Finite-element analysis on strength of glass-reinforced plastic shell of EMU locomotive-engine[J]. Agricultural Equipment & Vehicle Engineering, 2017, 55(10): 58-61. [4] 崔红利. 纤维层间混杂复合材料的抗冲击特性研究[D]. 天津: 中国民航大学, 2023.CUI Hong-li. Study on impact resistance of interlayer hybrid fiber composites[D]. Tianjin: Civil Aviation University of China, 2023. [5] 尚晓壮. 斜冲击作用下碳纤维增强复合材料层合板的动力学响应研究[D]. 重庆: 重庆大学, 2022.SHANG Xiao-zhuang. Dynamic response of carbon fiber reinforced composite laminates according to oblique impact load[D]. Chongqing: Chongqing University, 2022. [6] BANIK A, ZHANG C, KHAN M H, et al. Low-velocity ice impact response and damage phenomena on steel and CFRP sandwich composite[J]. International Journal of Impact Engineering, 2022, 162: 104134. doi: 10.1016/j.ijimpeng.2021.104134 [7] 孙杰. 环氧基CFRP的制备及低速冲击性能研究[D]. 青岛: 青岛理工大学, 2022.SUN Jie. Preparation of epoxy-based CFRP and research on low-velocity impact properties[D]. Qingdao: Qingdao University of Technology, 2022. [8] 皮骏, 崔红利, 贾元琨. 碳-芳纶纤维复合材料高速冲击响应数值模拟[J]. 机械强度, 2024, 46(2): 416-423.PI Jun, CUI Hong-li, JIA Yuan-kun. Numerical simulation of high-speed impact response of carbon aramid fiber composites[J]. Journal of Mechanical Strength, 2024, 46(2): 416-423. [9] 甄泓, 肖李军, 杜成鑫, 等. 在弹道冲击条件下超高分子量聚乙烯纤维复合材料板破坏模式[J]. 兵工学报, 2025, 46(7): 100-110.ZHEN Hong, XIAO Li-jun, DU Cheng-xin, et al. Damage modes of ultra-high molecular weight polyethylene fiber composite plates under ballistic impact conditions[J]. Acta Armamentarii, 2025, 46(7): 100-110. [10] 林作泓. 碳纤维层合板及其复合结构冲击损伤机理研究[D]. 太原: 中北大学, 2024.LIN Zuo-hong. Research on the impact damage mechanism of carbon fiber laminates and their composite structures[D]. Taiyuan: North University of China, 2024. [11] 赵凯, 姚曙光, 姜成, 等. 高速动车组头罩端盖用GFRP碰撞特性研究[J]. 铁道科学与工程学报, 2018, 15(3): 543-550.ZHAO Kai, YAO Shu-guang, JIANG Cheng, et al. Impact experimental study on fiberglass composite materials applied in the vehicle hood of high speed multiple units[J]. Journal of Railway Science and Engineering, 2018, 15(3): 543-550. [12] 刘凯. 冰冲击载荷作用下碳纤维复合材料层合板响应机理[D]. 长沙: 中南大学, 2022.LIU Kai. Response mechanism of carbon fiber composite laminates under ice impact load[D]. Changsha: Central South University, 2022. [13] WANG Z G, ZHAO M Q, LIU K, et al. Experimental analysis and prediction of CFRP delamination caused by ice impact[J]. Engineering Fracture Mechanics, 2022, 273: 108757. doi: 10.1016/j.engfracmech.2022.108757 [14] YUAN K, LIU K, WANG Z G, et al. Dynamic fracture in CFRP laminates: effect of projectile mass and dimension[J]. Engineering Fracture Mechanics, 2021, 251: 107764. doi: 10.1016/j.engfracmech.2021.107764 [15] 高莹. 地铁列车玻璃钢头罩冲撞损伤机理与耐撞性研究[D]. 长沙: 中南大学, 2023.GAO Ying. Research on impact damage mechanism and crashworthiness of GFRP hood of subway trains[D]. Changsha: Central South University, 2023. [16] ZHAO H N, FANG H Y, ZHAO X H, et al. Experimental and numerical investigation on dynamic behaviors of glass fiber reinforced polymer plates under explosion loadings[J]. International Journal of Impact Engineering, 2023, 171: 104362. doi: 10.1016/j.ijimpeng.2022.104362 [17] 随亚宾. 玻璃钢板损伤及老化声发射特性研究[D]. 东营: 中国石油大学(华东), 2018.SUI Ya-bin. Study on acoustic emission characteristics damage and aging of FRP sheets[D]. Dongying: China University of Petroleum (Huadong), 2018. [18] 丁来龙, 马明亮, 冯超, 等. 聚脲的材料优化及其抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 241-249.DING Lai-long, MA Ming-liang, FENG Chao, et al. Advances in optimization of polyurea materials and their anti-explosion and anti-invasion properties[J]. Materials Reports, 2025, 39(4): 241-249. [19] 甘云丹. 弹性体涂覆钢板水下爆炸冲击响应特性[D]. 宁波: 宁波大学, 2009.GAN Yun-dan. Dynamic characteristics of elastomer-coated steel plate underwater explosion[D]. Ningbo: Ningbo University, 2009. [20] YU Y, LI J L, XIE Z H, et al. Ballistic performance of aluminum alloy plates with polyurea coatings for high-speed train structures[J]. Composite Structures, 2025, 351: 118553. doi: 10.1016/j.compstruct.2024.118553 [21] SARAVANAN M K, SIVA PRASAD A V S, MANORAMA T, et al. Experimental, numerical and analytical modeling of ballistic response of polyurea-coated steel plates[J]. Mechanics of Advanced Materials and Structures, 2024, https://doi.org/10.1080/15376494.2024.2397728. [22] 朱学亮. 聚脲金属复合结构抗冲击防护性能研究[D]. 北京: 北京理工大学, 2016.ZHU Xue-liang. Study on impact and blast resistance of polyurea metal composite structure[D]. Beijing: Beijing Institute of Technology, 2016. [23] 覃尹星. 聚脲涂覆玻璃纤维复合板的抗冲击性能研究[D]. 绵阳: 西南科技大学, 2023.QIN Yin-xing. Study of impact resistance of polyurea coated glass fiber composite plates[D]. Mianyang: Southwest University of Science and Technology, 2023. [24] 卢春江. 冲击荷载下聚脲涂覆混凝土力学性能研究[D]. 绵阳: 西南科技大学, 2021.LU Chun-jiang. Study on mechanical properties of polyurea coated concrete under impact load[D]. Mianyang: Southwest University of Science and Technology, 2021. [25] WANG W, YANG G R, YANG J C, et al. Experimental and numerical research on reinforced concrete slabs strengthened with POZD coated corrugated steel under contact explosive load[J]. International Journal of Impact Engineering, 2022, 166: 104256. doi: 10.1016/j.ijimpeng.2022.104256 [26] 罗雄, 罗喜平, 张小娟, 等. 2006—2022年黔南州冰雹特征分析[J]. 山地气象学报, 2024, 48(1): 102-107.LUO Xiong, LUO Xi-ping, ZHANG Xiao-juan, et al. Analysis of hail characteristics in southern qiannan prefecture from 2006 to 2022[J]. Journal of Mountain Meteorology, 2024, 48(1): 102-107. [27] 李启芬, 曾妮, 蒙军, 等. 安顺市2015~2019年冰雹时空分布特征及雷达临近预警指标研究[J]. 中低纬山地气象, 2022, 46(5): 39-44, 75.LI Qi-fen, ZENG Ni, MENG Jun, et al. Study on the spatial-temporal distribution characteristics of hail and the radar approaching warning indicators in Anshun city from 2015 to 2019[J]. Mid-low Latitude Mountain Meteorology, 2022, 46(5): 39-44, 75. -
下载: