留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢电混合动力船舶功率分配控制与能量管理策略试验验证

刘汉有 范爱龙 夏民杰 李涛涛 王昕伟 管聪 杨福宝

刘汉有, 范爱龙, 夏民杰, 李涛涛, 王昕伟, 管聪, 杨福宝. 氢电混合动力船舶功率分配控制与能量管理策略试验验证[J]. 交通运输工程学报, 2025, 25(4): 221-237. doi: 10.19818/j.cnki.1671-1637.2025.04.016
引用本文: 刘汉有, 范爱龙, 夏民杰, 李涛涛, 王昕伟, 管聪, 杨福宝. 氢电混合动力船舶功率分配控制与能量管理策略试验验证[J]. 交通运输工程学报, 2025, 25(4): 221-237. doi: 10.19818/j.cnki.1671-1637.2025.04.016
LIU Han-you, FAN Ai-long, XIA Min-jie, LI Tao-tao, WANG Xin-wei, GUAN Cong, YANG Fu-bao. Experimental validation of power distribution control and energy management strategies for hydrogen-electric hybrid power ship[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 221-237. doi: 10.19818/j.cnki.1671-1637.2025.04.016
Citation: LIU Han-you, FAN Ai-long, XIA Min-jie, LI Tao-tao, WANG Xin-wei, GUAN Cong, YANG Fu-bao. Experimental validation of power distribution control and energy management strategies for hydrogen-electric hybrid power ship[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 221-237. doi: 10.19818/j.cnki.1671-1637.2025.04.016

氢电混合动力船舶功率分配控制与能量管理策略试验验证

doi: 10.19818/j.cnki.1671-1637.2025.04.016
基金项目: 

国家自然科学基金项目 52571365

科技部中国-克罗地亚科技合作项目 2024-28

湖北省国际科技合作项目 2024EHA038

详细信息
    作者简介:

    刘汉有(1996-),男,江西赣州人,武汉理工大学博士研究生,从事新能源船舶能效控制技术研究

    通讯作者:

    范爱龙(1990-),男,安徽巢湖人,武汉理工大学特设教授,工学博士

  • 中图分类号: U664.1

Experimental validation of power distribution control and energy management strategies for hydrogen-electric hybrid power ship

Funds: 

National Natural Science Foundation of China 52571365

Chinese-Croatian Bilateral Project on Key Technologies of Net Zero Greenhouse Gas Emissions in Shipping Industry 2024-28

Hubei International Science and Technology Cooperation Project 2024EHA038

More Information
Article Text (Baidu Translation)
  • 摘要: 为探究船舶能量管理策略在实际混合动力系统以及复杂工况下的真实性能,基于缩比试验平台测试了3种能量管理策略的性能;以一艘氢电混合动力船为研究对象,借鉴船载能量管理系统特点,设计了既有策略Ⅰ;通过制定8个燃料电池堆栈的启停规则,设计了既有策略Ⅱ以及状态机策略;提出了试验平台缩放方法,模拟了燃料电池系统和蓄电池系统;依据燃料电池的最佳效率点和试验平台特点,设计缩放系数为342.857;在稳态工况和瞬态工况下,基于试验数据分析了功率分配控制性能、效率、能耗、运行压力以及应用特点与局限性。试验结果表明:试验平台的功率分配控制平均偏差在1%以内,可以非常好地跟踪能量管理策略优化后的燃料电池参考功率,其中状态机策略在稳态和瞬态工况实际电流和参考电流的平均绝对偏差分别为0.120%、0.029%;在所提出的3种能量管理策略中,状态机策略在节能和降低燃料电池运行压力方面表现综合最佳,在稳态工况和瞬态工况下,相比既有策略Ⅰ可分别降低2.84%和7.23%氢气消耗,相比既有策略Ⅱ可以分别降低83.00%和84.23%的燃料电池堆栈启停频率;状态机策略下能够使得燃料电池堆栈平均效率维持在52%以上;状态机策略在应用过程面临着燃料电池频繁启停、决策权冲突以及燃料电池性能退化等挑战;所提出的试验方法存在一定局限性,燃料电池模拟设备的响应时间为1 s且存在300 W功率损失,并受到试验环境以及缩放和简化过程的影响;所提出的试验方法与能量管理策略可以用于指导实船高效能量管理策略的研究与应用。

     

  • 图  1  三峡氢舟1

    Figure  1.  Three Gorges Hydrogen Boat No.1

    图  2  “三峡氢舟1”航行工况数据

    Figure  2.  Navigation conditions data of "Three Gorges Hydrogen Boat No.1"

    图  3  试验现场

    Figure  3.  Test site

    图  4  单个燃料电池堆栈功率-效率特性

    Figure  4.  Power-efficiency characteristics of a single fuel cell stack

    图  5  试验平台稳态工况

    Figure  5.  Steady-state conditions of experimental platform

    图  6  稳态工况下既有策略结果

    Figure  6.  Energy management results under steady-state conditions with existing strategies

    图  7  稳态工况下状态机策略结果

    Figure  7.  Results of state machine strategy under steady-state conditions

    图  8  试验平台瞬态工况

    Figure  8.  Transient conditions of experimental platform

    图  9  瞬态工况下既有策略结果

    Figure  9.  Experimental results of existing strategies under transient conditions

    图  10  瞬态工况下状态机策略结果

    Figure  10.  Results of state machine strategy under transient conditions

    图  11  状态机能量管理策略功率控制结果

    Figure  11.  Power control results of state machine energy management strategy

    图  12  稳态工况效率和能耗

    Figure  12.  Efficiency and energy consumption under steady-state conditions

    图  13  瞬态工况效率与能耗

    Figure  13.  Efficiency and energy consumption under transient conditions

    图  14  响应特性

    Figure  14.  Response characteristics

    表  1  “三峡氢舟1”的主要设计参数

    Table  1.   Key design parameters of "Three Gorges Hydrogen Boat No.1"

    参数 参数
    最大船长/m 49.90 燃料电池堆栈额定功率/kW 70
    型深/m 3.20 蓄电池组总容量/(kW·h) 903
    型宽/m 10.40 燃料电池堆栈数量 8
    设计吃水/m 1.85 蓄电池组数量 2
    乘客/人 80 推进电机功率/kW 2×500
    巡航航速/(km·h-1) 20 最大航速/(km·h-1) 28
    氢气储量 35 MPa,≥240 kg 续航力/km 巡航下不少于200
    下载: 导出CSV

    表  2  基于试验平台的既有策略Ⅰ

    Table  2.   Existing strategy Ⅰ based on experimental platform

    优先级顺序 模式 案例船单个燃料电池堆栈电流/A 试验平台
    单个燃料电池堆栈电流/A 燃料电池系统总电流/A
    6 模式0 0 0.000 0.000
    5 模式1 100 0.113 0.904
    4 模式2 150 0.170 1.360
    3 模式3 200 0.227 1.816
    2 模式4 250 0.283 2.264
    1 模式5 270 0.306 2.449
    下载: 导出CSV

    表  3  燃料电池堆栈启用数量规则

    Table  3.   Rules for activation of fuel cell stacks

    案例船燃料电池系统总功率规则/kW 试验平台燃料电池系统总功率规则/W 启用数量/个
    Pt≤25 Ps≤72.92 0
    25 < Pt≤50 72.92 < Ps≤145.83 1
    50 < Pt≤100 145.83 < Ps≤291.67 2
    100 < Pt≤150 291.67 < Ps≤437.50 3
    150 < Pt≤200 437.50 < Ps≤583.33 4
    200 < Pt≤250 583.33 < Ps≤729.17 5
    250 < Pt≤300 729.17 < Ps≤875.00 6
    300 < Pt≤350 875.00 < Ps≤1 020.83 7
    350 < Pt 1 020.83 < Ps 8
    下载: 导出CSV

    表  4  状态机规则

    Table  4.   State machine rules

    S/% 状态 Pd/W Pr/W
    S>Smax 1 PdP1 P2
    2 Pd∈[P1P2] Pd
    3 PdP2 P2
    4 PdP3 P3
    SminSSmax 5 Pd∈[P3P2] Pd
    6 PdP2 P2
    S < Smin 7 PdP2 Pd+Pc
    8 PdP2 P2
    下载: 导出CSV

    表  5  关键参数缩放前后对比

    Table  5.   Comparison of key parameters before and after scaling

    编号 关键参数 “三峡氢舟1” 试验平台 说明
    1 直流母线电压/V 650 490 模拟直流组网
    2 燃料电池系统最小输出功率/kW 15 0.5 用于设计能量管理策略
    3 燃料电池系统最优总输出功率/kW 240 0.7 用于设计能量管理策略
    4 单个燃料电池堆栈最优输出功率/kW 30 0.087 5 87.5 W=700 W×(240 kW/30 kW)
    5 燃料电池系统最大总输出功率/kW 500 1.2 用于设计能量管理策略
    6 单个燃料电池堆栈最大输出功率/kW 70 0.168 168 W=1 200 W×(70 kW/500 kW)
    7 燃料电池系统最大总输出电流/A 2 160 2.45 2.449 A≈1 200 W/490 V
    8 单个燃料电池堆栈最大输出电流/A 270 0.31 0.306 A≈2.449 A×(270 A/2 160 A)
    9 蓄电池组最大放电电流/A 100 1.5 用于设计能量管理策略
    10 蓄电池组最大充电电流/A -100 -1.5 用于设计能量管理策略
    11 蓄电池容量/(kW·h) 1 806 10 减少试验时间
    下载: 导出CSV

    表  6  氢气消耗量以及SOC末端值

    Table  6.   Hydrogen consumption and final SOC values

    策略 工况 平均瞬时效率/% 直接氢气消耗量/g SOC末端值/ % 间接等效氢气消耗量/g 总等效氢气消耗量/g
    既有策略Ⅰ 稳态 50.27 7 316.80 33.11 3 214.83 10 531.63
    瞬态 49.50 3 654.48 49.82 1 530.30 5 184.78
    既有策略Ⅱ 稳态 53.08 7 072.91 33.11 3 214.83 10 287.74
    瞬态 51.44 3 583.05 49.82 1 530.30 5 113.35
    状态机策略 稳态 53.43 8 857.88 51.36 1 375.05 10 232.93
    瞬态 52.49 4 096.06 57.92 713.74 4 809.80
    下载: 导出CSV

    表  7  混合动力系统统计量

    Table  7.   Statistical metrics of hybrid power systems

    策略类型 工况 母线电压标准差/V 功率标准差/W 策略模式切换频次 燃料电池启用数量变化频次
    燃料电池 蓄电池
    既有策略Ⅰ 稳态 0.69 330.81 85.62 96 0
    瞬态 0.76 219.65 110.85 132 0
    既有策略Ⅱ 稳态 0.69 330.81 85.62 96 743
    瞬态 0.76 219.65 110.85 132 218
    状态机策略 稳态 1.24 225.32 169.58 125 126
    瞬态 0.72 144.37 104.37 30 20
    下载: 导出CSV
  • [1] 包甜甜, 连峰, 杨忠振. 航运管理研究综述[J]. 交通运输工程学报, 2020, 20(4): 55-69. doi: 10.19818/j.cnki.1671-1637.2020.04.004

    BAO Tian-tian, LIAN Feng, YANG Zhong-zhen. Research review of shipping management[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 55-69. doi: 10.19818/j.cnki.1671-1637.2020.04.004
    [2] HE Y P, FAN A L, WANG Z, et al. Two-phase energy efficiency optimisation for ships using parallel hybrid electric propulsion system[J]. Ocean Engineering, 2021, 238: 109733. doi: 10.1016/j.oceaneng.2021.109733
    [3] 龙浩楠, 刘桂玲, 汤文军. "三峡氢舟1 "氢燃料供电系统设计要点[J]. 交通节能与环保, 2023, 19(4): 14-18.

    LONG Hao-nan, LIU Gui-ling, TANG Wen-jun. Design points of hydrogen fuel power supply system for" San Xia Qing Zhou 1"[J]. Transport Energy Conservation & Environmental Protection, 2023, 19(4): 14-18.
    [4] 王东兴, 王哲, 赵帆, 等. 氢燃料电池动力船舶技术标准现状分析与发展展望[J]. 交通信息与安全, 2023, 41(2): 157-167, 178.

    WANG Dong-xing, WANG Zhe, ZHAO Fan, et al. State-of-the-art and prospect of technical standards for the ships powered by hydrogen fuel cells[J]. Journal of Transport Information and Safety, 2023, 41(2): 157-167, 178.
    [5] 袁裕鹏, 许朝远, 李娜, 等. 港口多能源融合系统综述[J]. 交通运输工程学报, 2024, 24(4): 83-103. doi: 10.19818/j.cnki.1671-1637.2024.04.007

    YUAN Yu-peng, XU Chao-yuan, LI Na, et al. Review on multi-energy integration systems in ports[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 83-103. doi: 10.19818/j.cnki.1671-1637.2024.04.007
    [6] 范爱龙, 李永平, 杨强, 等. 船舶混合动力系统能量管理预测控制方法研究[J]. 哈尔滨工程大学学报, 2024, 45(1): 162-173.

    FAN Ai-long, LI Yong-ping, YANG Qiang, et al. A study of energy management predictive control of ship hybrid power system[J]. Journal of Harbin Engineering University, 2024, 45(1): 162-173.
    [7] REZAEI H, ABDOLLAHI S E, ABDOLLAHI S, et al. Energy management strategies of battery-ultracapacitor hybrid sto-rage systems for electric vehicles: review, challenges, and future trends[J]. Journal of Energy Storage, 2022, 53: 105045. doi: 10.1016/j.est.2022.105045
    [8] ZHAO Z H. Improved fuzzy logic control-based energy mana-gement strategy for hybrid power system of FC/PV/battery/SC on tourist ship[J]. International Journal of Hydrogen En-ergy, 2022, 47(16): 9719-9734. doi: 10.1016/j.ijhydene.2022.01.040
    [9] GE Y Q, ZHANG J D, ZHOU K X, et al. Research on energy management for ship hybrid power system based on adaptive equivalent consumption minimization strategy[J]. Journal of Marine Science and Engineering, 2023, 11(7): 1271. doi: 10.3390/jmse11071271
    [10] ZHANG L, LIAO R J, WEI X D, et al. PMP method with a cooperative optimization algorithm considering speed planning and energy management for fuel cell vehicles[J]. Interna-tional Journal of Hydrogen Energy, 2024, 79: 434-447. doi: 10.1016/j.ijhydene.2024.06.297
    [11] LIU H Y, FAN A L, LI Y P, et al. Hierarchical distributed MPC method for hybrid energy management: a case study of ship with variable operating conditions[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113894. doi: 10.1016/j.rser.2023.113894
    [12] FAN A L, YAN J H, XIONG Y Q, et al. Characteristics of real-world ship energy consumption and emissions based on onboard testing[J]. Marine Pollution Bulletin, 2023, 194: 115411. doi: 10.1016/j.marpolbul.2023.115411
    [13] JUNG W, CHANG D. Deep reinforcement learning-based energy management for liquid hydrogen-fueled hybrid electric ship propulsion system[J]. Journal of Marine Science and En-gineering, 2023, 11(10): 2007. doi: 10.3390/jmse11102007
    [14] FAN A L, LI Y P, LIU H Y, et al. Development trend and hotspot analysis of ship energy management[J]. Journal of Cleaner Production, 2023, 389: 135899. doi: 10.1016/j.jclepro.2023.135899
    [15] LIU H Y, FAN A L, LI Y P, et al. Testing methods for multi-energy ship energy management system: a systematic review[J]. Ocean Engineering, 2024, 304: 117889. doi: 10.1016/j.oceaneng.2024.117889
    [16] WANG Z, CHEN L, WANG B, et al. Integrated optimiza-tion of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors[J]. En-ergy, 2023, 282: 128795.
    [17] CHEN L, GAO D J, XUE Q M. Energy management stra-tegy for hybrid power ships based on nonlinear model pre-dictive control[J]. International Journal of Electrical Po-wer & Energy Systems, 2023, 153: 109319.
    [18] LUO Y B, KONG L Q, FANG S D, et al. Reviews on the power management for shipboard energy storage systems[J]. Sustainable Horizons, 2024, 9: 100094. doi: 10.1016/j.horiz.2024.100094
    [19] NIVOLIANITI E, KARNAVAS Y L, CHARPENTIER J F. Energy management of shipboard microgrids integrating en-ergy storage systems: a review[J]. Renewable and Sustain-able Energy Reviews, 2024, 189: 114012. doi: 10.1016/j.rser.2023.114012
    [20] LI J Y, CHANG Y J, XU L B, et al. A data-driven LSTM-based management and control approach for fatigue life of subsea wellhead system[J]. Ocean Engineering, 2024, 313: 119335. doi: 10.1016/j.oceaneng.2024.119335
    [21] ANTONOPOULOS S, VISSER K, KALIKATZARAKIS M, et al. MPC framework for the energy management of hybrid ships with an energy storage system[J]. Journal of Marine Science and Engineering, 2021, 9(9): 993. doi: 10.3390/jmse9090993
    [22] VIZENTIN G, VUKELIC G, MURAWSKI L, et al. Marine propulsion system failures-a review[J]. Journal of Marine Science and Engineering, 2020, 8(9): 662. doi: 10.3390/jmse8090662
    [23] LATORRE A, SOEIRO T B, GEERTSMA R, et al. Ship-board DC systems-a critical overview: challenges in pri-mary distribution, power-electronics-based protection, and power scalability[J]. IEEE Open Journal of the Industrial Electronics Society, 2023, 4: 259-286. doi: 10.1109/OJIES.2023.3294999
    [24] WANG Z, DONG B, LI MY, et al. Configuration of low-carbon fuels green marine power systems in diverse ship types and applications[J]. Energy Conversion and Management, 2024, 302: 118139. doi: 10.1016/j.enconman.2024.118139
    [25] GHIMIRE P, ZADEH M, PEDERSEN E, et al. Dynamic modeling, simulation, and testing of a marine DC hybrid power system[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 905-919. doi: 10.1109/TTE.2020.3023896
    [26] DARAZ A. Optimized cascaded controller for frequency sta-bilization of marine microgrid system[J]. Applied Energy, 2023, 350: 121774. doi: 10.1016/j.apenergy.2023.121774
    [27] COELHO A, IRIA J, SOARES F, et al. Real-time manage-ment of distributed multi-energy resources in multi-energy networks[J]. Sustainable Energy, Grids and Networks, 2023, 34: 101022. doi: 10.1016/j.segan.2023.101022
    [28] CHEN W J, TAI K, LAU M W S, et al. Optimal power and energy management control for hybrid fuel cell-fed shipboard dc microgrid[J]. IEEE Transactions on Intelligent Transpor-tation Systems, 2023, 24(12): 14133-14150. doi: 10.1109/TITS.2023.3303886
    [29] MYLONOPOULOS F, POLINDER H, CORADDU A. A comprehensive review of modeling and optimization methods for ship energy systems[J]. IEEE Access, 2023, 11: 32697-32707. doi: 10.1109/ACCESS.2023.3263719
    [30] PLANAKIS N, PAPALAMBROU G, KYRTATOS N. Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques[J]. Applied Energy, 2022, 307: 118085. doi: 10.1016/j.apenergy.2021.118085
    [31] 范爱龙, 刘汉有, 杨福宝, 等. 船舶混合动力系统硬件在环仿真平台和试验研究[J]. 中国造船, 2023, 64(3): 262-274.

    FAN Ai-long, LIU Han-you, YANG Fu-bao, et al. Hard-ware-in-the-loop simulation platform and experimental study of ship hybrid power system[J]. Shipbuilding of China, 2023, 64(3): 262-274.
    [32] SHAKERI N, ZADEH M, BREMNES NIELSEN J. Hydro-gen fuel cells for ship electric propulsion: moving toward greener ships[J]. IEEE Electrification Magazine, 2020, 8(2): 27-43. doi: 10.1109/MELE.2020.2985484
    [33] PAN P C, SUN Y W, YUAN C Q, et al. Research progress on ship power systems integrated with new energy sources: a review[J]. Renewable & Sustainable Energy Reviews, 2021, 144.
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  47
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-09
  • 录用日期:  2025-05-06
  • 修回日期:  2025-04-18
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回