留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磨耗状态下城际动车组轮轨曲线磨耗特性

寇杰 张济民 周和超 王承萍

寇杰, 张济民, 周和超, 王承萍. 磨耗状态下城际动车组轮轨曲线磨耗特性[J]. 交通运输工程学报, 2021, 21(3): 279-288. doi: 10.19818/j.cnki.1671G1637.2021.03.020
引用本文: 寇杰, 张济民, 周和超, 王承萍. 磨耗状态下城际动车组轮轨曲线磨耗特性[J]. 交通运输工程学报, 2021, 21(3): 279-288. doi: 10.19818/j.cnki.1671G1637.2021.03.020
KOU Jie, ZHANG Ji-min, ZHOU He-chao, WANG Cheng-ping. Wheel-rail wear characteristics of intercity EMUs on curve in worn stages[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 279-288. doi: 10.19818/j.cnki.1671G1637.2021.03.020
Citation: KOU Jie, ZHANG Ji-min, ZHOU He-chao, WANG Cheng-ping. Wheel-rail wear characteristics of intercity EMUs on curve in worn stages[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 279-288. doi: 10.19818/j.cnki.1671G1637.2021.03.020

磨耗状态下城际动车组轮轨曲线磨耗特性

doi: 10.19818/j.cnki.1671G1637.2021.03.020
基金项目: 

国家重点研发计划项目 2018YFB1201603

详细信息
    作者简介:

    寇杰(1994-),男,四川宜宾人,同济大学工学博士研究生,从事轨道车辆系统动力学研究

    张济民(1969-),男,四川遂宁人,同济大学教授,工学博士

    通讯作者:

    周和超(1985-),男,湖北武汉人,同济大学助理教授,工学博士

  • 中图分类号: U273.1

Wheel-rail wear characteristics of intercity EMUs on curve in worn stages

Funds: 

National Key Research and Development Program of China 2018YFB1201603

More Information
  • 摘要: 以CRH6A城际动车组为研究对象,基于实测磨耗后轮轨型面,利用多体动力学软件Universal Mechanism建立了车辆动力学模型,计算了通过曲线时的轮轨力与轮对位置参数;在非线性有限元软件ABAQUS中,基于任意拉格朗日欧拉方法建立了轮轨三维滚动接触模型,计算了轮轨接触应力特性和滑移特性;基于Archard磨损模型,提出一种车轮表面接触区域磨损速率快速计算方法,研究了新轮、磨耗初期车轮和磨耗到限车轮与新轨、磨耗后钢轨相互作用下,车轮通过曲线时接触区域磨损特性。研究结果表明:新轮和磨耗后钢轨、磨耗初期车轮和新轨、磨耗到限车轮与新轨相互作用下最大法向接触应力分别达到了2 017、1 803和1 668 MPa,比新轮和新轨、磨耗初期车轮和磨耗后钢轨、磨耗到限车轮和磨耗后钢轨3种作用下最大接触应力高出20%以上;新轮和磨耗后钢轨、磨耗初期车轮与新轨、磨耗初期车轮和磨耗后钢轨相互作用下,轮轨间出现两点接触、三点接触,甚至四点接触;在多点接触下,轮缘处接触点表现出应力集中且磨损速率较高的特点,最大磨损速率分别达到2.60×10-5、3.82×10-5、3.52×10-5 mm·s-1,远高于新轮和新轨、磨耗到限车轮和新轨、磨耗到限车轮和旧轨3种作用下的磨损速率;磨耗到限车轮和新轨与磨耗钢轨相互作用下的磨损速率均相对较小,说明在磨耗后期的车轮磨耗相对较小;轨角磨耗会严重加剧新轮的轮缘磨耗,且磨耗初期车轮具有较高的轮缘磨损速率,应将车轮镟修周期和钢轨打磨周期相协调,并通过涂油等方式降低磨耗初期的轮缘磨损。

     

  • 图  1  车轮外形

    Figure  1.  Wheel profiles

    图  2  钢轨外形

    Figure  2.  Rail profiles

    图  3  不同磨耗状态轮轨接触分布

    Figure  3.  Wheel-rail contact distributions in different worn stages

    图  4  不同磨耗状态下等效锥度

    Figure  4.  Equivalent conicities in different worn stages

    图  5  轮轨稳态滚动接触有限元模型

    Figure  5.  Finite element model of wheel-rail steady-state rolling contact

    图  6  轮轨接触区域

    Figure  6.  Wheel-rail contact area

    图  7  量纲-磨耗系数取值范围

    Figure  7.  Ranges of dimensionless wear coefficient

    图  8  旧轮1-新轨法向接触应力

    Figure  8.  Normal contact stress of old wheel 1-new rail

    图  9  旧轮2-新轨法向接触应力

    Figure  9.  Normal contact stress of old wheel 2-new rail

    图  10  新轮-旧轨法向接触应力

    Figure  10.  Normal contact stress of new wheel-old rail

    图  11  旧轮1-旧轨法向接触应力

    Figure  11.  Normal contact stress of old wheel 1-old rail

    图  12  不同磨损程度车轮接触表面粘着-滑移分布

    Figure  12.  Stick-slip distributions on wheel surfaces in different worn stage

    图  13  不同磨损程度下车轮磨损速率

    Figure  13.  Wear rates of wheels in different worn stages

    表  1  仿真和试验车辆刚体模态对比

    Table  1.   Rigid-body modes comparison between simulation and test vehicles

    振型 横摆 摇头 侧滚 浮沉 点头
    振动频率/Hz 仿真 0.61 0.98 1.61 2.28 3.26
    试验 0.59 1.05 1.50 2.11 3.27
    误差/% 2.56 6.22 1.58 7.85 0.43
    下载: 导出CSV

    表  2  主要动力学指标

    Table  2.   Main dynamics factors

    指标 角速度/(rad·s-1) 速度/(m·s-1) 垂向力/kN 轮对横向位移/mm 轮轨冲角/mrad
    接触对 新轮-新轨 42.13 19.44 67.13 9.75 4.42
    旧轮1-新轨 42.20 19.45 67.34 10.80 4.79
    旧轮2-新轨 42.14 19.45 67.11 14.57 4.44
    新轮-新轨 42.17 19.45 67.16 19.11 4.57
    旧轮1-旧轨 42.23 19.45 67.53 20.10 5.00
    旧轮2-旧轨 42.20 19.45 67.48 19.82 4.61
    下载: 导出CSV

    表  3  轮轨接触特性指标

    Table  3.   Wheel-rail contact characteristic factors

    接触对 法向接触应力/MPa 接触斑面积/mm2 接触类型 纵向摩擦力/MPa 横向摩擦力/MPa
    新轮-新轨 1 158 111 单点 -303 159
    旧轮1-新轨 1 803 187 三点 -449 235
    旧轮2-新轨 1 668 64 单点 -408 227
    新轮-旧轨 2 017 69 两点 -545 -342
    旧轮1-旧轨 1 370 160 四点 -405 -231
    旧轮2-旧轨 1 200 114 单点 12 35
    下载: 导出CSV
  • [1] 寇杰, 张济民, 周和超, 等. 非均衡速度下城际动车组车轮曲线磨耗特性[J]. 机械工程学报, 2020, 56(16): 137-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016015.htm

    KOU Jie, ZHANG Ji-min, ZHOU He-chao, et al. Wheel wear of intercity EMU at non-equilibrium speed on curves[J]. Journal of Mechanical Engineering, 2020, 56(16): 137-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016015.htm
    [2] JIN Xue-song, XIAO Xin-biao, WEN Ze-feng, et al. An investigation into the effect of train curving on wear and contact stresses of wheel and rail[J]. Tribology International, 2009, 42(3): 475-490. doi: 10.1016/j.triboint.2008.08.004
    [3] PEARCE T G, SHERRATT N D. Prediction of wheel profile wear[J]. Wear, 1991, 144: 343-351. doi: 10.1016/0043-1648(91)90025-P
    [4] LEWIS R, OLOFSSON U. Mapping rail wear regimes and transitions[J]. Wear, 2004, 257(7/8): 721-729. http://www.sciencedirect.com/science/article/pii/S0043164804000687
    [5] BRAGHIN F, LEWIS R, DWYER-JOYCE R S, et al. A mathematical model to predict railway wheel profile evolution due to wear[J]. Wear, 2006, 261(11/12): 1253-1264. http://www.sciencedirect.com/science/article/pii/S0043164806001244
    [6] LEWIS R, DWYER-JOYCE R S, OLOFSSON U, et al. Mapping railway wheel material wear mechanisms and transitions[J]. Journal of Rail and Rapid Transit, 2010, 224(3): 125-137. doi: 10.1243/09544097JRRT328
    [7] ZOBORY I. Prediction of wheel/rail profile wear[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 1997, 28(2/3): 221-259
    [8] ENBLOM R. Deterioration mechanisms in the wheel-rail interface with focus on wear prediction: a literature review[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 2009, 47(6): 661-700. doi: 10.1080/00423110802331559
    [9] JENDEL T. Prediction of wheel profile wear—comparisons with field measurements[J]. Wear, 2002, 253(1/2): 89-99. http://www.sciencedirect.com/science/article/pii/S004316480200087X
    [10] ENBLOM R, BERG M. Simulation of railway wheel profile development due to wear: influence of disc braking and contact environment[J]. Wear, 2004, 258(7): 1055-1063. http://www.sciencedirect.com/science/article/pii/S004316480400314X
    [11] ENBLOM R, BERG M. Impact of non-elliptic contact modelling in wheel wear simulation[J]. Wear, 2008, 265(9/10): 1532-1541. http://www.sciencedirect.com/science/article/pii/S0043164808001762
    [12] ZAKHAROV S, ZHAROV I. Simulation of mutual wheel/rail wear[J]. Wear, 2002, 253(1): 100-106.
    [13] WARD A, LEWIES R, DWYER-JOYCE R S. Incorporating a railway wheel wear model into multi-body simulations of wheelset dynamics[J]. Tribological Research and Design for Engineering Systems, 2003, 41(3): 367-376. http://www.sciencedirect.com/science/article/pii/S0167892203801505
    [14] 常崇义, 王成国, 金鹰. 基于三维动态有限元模型的轮轨磨耗数值分析[J]. 中国铁道科学, 2008, 29(4): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200804017.htm

    CHANG Chong-yi, WANG Cheng-guo, JIN Ying. Numerical analysis of wheel/rail wear based on 3D dynamic finite element model[J]. China Railway Science, 2008, 29(4): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200804017.htm
    [15] CHANG Chong-yi, WANG Cheng-guo, JIN Ying. Study on numerical method to predict wheel/rail profile evolution due to wear[J]. Wear, 2010, 269(3/4): 167-173. http://www.sciencedirect.com/science/article/pii/S004316480900653X
    [16] 张军, 仲政. 机车车辆轮轨接触问题的数值模拟[J]. 同济大学学报(自然科学版), 2006, 34(9): 1232-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200609018.htm

    ZHANG Jun, ZHONG Zheng. Numerical analysis of locomotive and vehicle wheel-rail contact problems[J]. Journal of Tongji University (Natural Science), 2006, 34(9): 1232-1236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200609018.htm
    [17] 神圣, 张军, 孙传喜, 等. 磨耗状态下机车车轮与曲线钢轨的接触分析[J]. 铁道学报, 2012, 34(6): 15-19. doi: 10.3969/j.issn.1001-8360.2012.06.003

    SHEN Sheng, ZHANG Jun, SUN Chuan-xi, et al. Analysis on contact between worn wheel and rail on curve[J]. Journal of the China Railway Society, 2012, 34(6): 15-19. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.06.003
    [18] 杨新文, 姚一鸣, 周顺华. 基于轮轨非Hertz接触的影响系数的有限元计算方法[J]. 同济大学学报(自然科学版), 2017, 45(10): 1476-1482. doi: 10.11908/j.issn.0253-374x.2017.10.009

    YANG Xin-wen, YAO Yi-ming, ZHOU Shun-hua. Calculation of influencing number of wheel rail non-Hertz contact using finite element method[J]. Journal of Tongji University (Natural Science), 2017, 45(10): 1476-1482. (in Chinese) doi: 10.11908/j.issn.0253-374x.2017.10.009
    [19] GU Shao-jie, YANG Xin-wen, ZHOU Shun-hua, et al. An innovative contact partition model for wheel/rail normal contact[J]. Wear, 2016, 366/367: 38-48. doi: 10.1016/j.wear.2016.07.001
    [20] TELLISKIVI T, OLOFSSON U. Contact mechanics analysis of measured wheel-rail profiles using the finite element method[J]. Journal of Rail and Rapid Transit, 2001, 215(2): 65-72. doi: 10.1243/0954409011531404
    [21] MEINDERS T B, MEINKE P, SCHIEHLEN W O. Wear estimation in flexible multibody system with application to railroads[C]//ECCOMAS. Multibody Dynamics 2005, Advances in Computational Multibody Dynamics. Spain: ECCOMAS, 2005: 1-20.
    [22] FRÖHLING R. Strategies to control wheel profile wear[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 2002, 37(S1): 490-501. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9851138&site=ehost-live
    [23] POLACH O, NICKLISCH D. Wheel/rail contact geometry parameters in regard to vehicle behaviour and their alteration with wear[J]. Wear, 2016, 366/367: 200-208. doi: 10.1016/j.wear.2016.03.029
    [24] KARTTUNEN K, KABO E, EKBERG A. Numerical assessment of the influence of worn wheel tread geometry on rail and wheel deterioration[J]. Wear, 2014, 317(1/2): 77-91. http://www.sciencedirect.com/science/article/pii/S0043164814001677
    [25] 王雪萍, 张军, 马贺. 高速列车车轮踏面磨耗预测方法的研究[J]. 摩擦学学报, 2018, 38(4): 462-467. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201804011.htm

    WANG Xue-ping, ZHANG Jun, MA He. Prediction method of wheel wear of high speed train[J]. Tribology, 2018, 38(4): 462-467. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201804011.htm
    [26] 侯传伦, 翟婉明, 邓锐. 曲线磨耗状态下轮轨弹塑性接触有限元分析[J]. 中国铁道科学, 2009, 30(5): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200905005.htm

    HOU Chuan-lun, ZHAI Wan-ming, DENG Rui. Finite element analysis of the elastic-plastic contact of the worn wheels and rails on curve[J]. China Railway Science, 2009, 30(5): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200905005.htm
    [27] 张军, 贾小平, 孙传喜, 等. 磨耗车轮与曲线钢轨接触关系[J]. 交通运输工程学报, 2011, 11(3): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201103009.htm

    ZHANG Jun, JIA Xiao-ping, SUN Chuan-xi. Contact relationship of wear wheel and curved rail[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201103009.htm
    [28] 侯茂锐, 王卫东, 常崇义, 等. 动车所小半径曲线钢轨磨耗及减磨措施研究[J]. 铁道学报, 2018, 40(3): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201803008.htm

    HOU Mao-rui, WANG Wei-dong, CHANG Chong-yi, et al. A Study of rail wear on sharp curves in EMU maintenance depot[J]. Journal of The China Railway Society, 2018, 40(3): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201803008.htm
    [29] ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 2004, 24(8): 981-988. doi: 10.1063/1.1721448
    [30] LIM S C, ASHBY M F. Wear-mechanism maps[J]. Scripta Metallurgica et Materialia, 1987, 35(1): 1-24.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  123
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回