Citation: | DAI Xue-zhen, JIANG Ying-jun, REN Jiao-long, DONG Guo-jun, SUN Ting-xuan, LIU Gen-chang. CBR particle flow simulation of aggregate and design of coarse aggregate skeleton gradation with strong interlocked force[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 10-15. doi: 10.19818/j.cnki.1671-1637.2011.03.003 |
[1] |
YUAN Wan-jie. Road performance and design method of multilevel dense built-in gradation[D]. Xi'an: Chang'an University, 2004. (in Chinese)
|
[2] |
CHENZhong-da, YUAN Wan-jie, GAO Chun-hai. Research on design method of multilevel dense built-in gradation[J]. China Journal of Highway and Transport, 2006, 19 (1): 32-37. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.01.007
|
[3] |
XU Yong-li, YU Xiao-kun, WANG Feng. Reasonable particle size distribution of framework dense structure of cement stabilizing crushed rock[J]. Journal of Northeast Forestry University, 2009, 37 (8): 102-103. (in Chinese) doi: 10.3969/j.issn.1000-5382.2009.08.038
|
[4] |
JI ANG Ying-jun. Road performance and composition design of cement-ash stabilized aggregate of dense framework structure[J]. Journal of Chang'an University: Natural Science Edition, 2008, 28 (5): 1-4. (in Chinese) doi: 10.3321/j.issn:1671-8879.2008.05.001
|
[5] |
JIANG Ying-jun. Mix design method for li me-fly-ash-stabilized aggregate of multilevel dense built-in grading structure[J]. Journal of Chongqing Jiaotong University: Natural Science, 2010, 29 (5): 732-736. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201005016.htm
|
[6] |
WU Chuan-hai. Analysis on stage filling influence on conbined mineral skeleton properties based on Baley method[J]. Highway, 2010 (7): 161-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201007038.htm
|
[7] |
WANG Duan-yi, ZHAO Xi. Simulation of uniaxial compression test for asphalt mixture with discrete element method[J]. Journal of South China University of Technology: Natural Science Edition, 2009, 27 (7): 37-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200907008.htm
|
[8] |
TANG Xian, DAI Jing-liang. Simulation of particle contact of asphalt mixture based on particle flow code[J]. Journal of Zhengzhou University: Engineering Science, 2009, 30 (1): 111-114. (in Chinese) doi: 10.3969/j.issn.1671-6833.2009.01.025
|
[9] |
ZHOUJian, WANG Jia-quan, ZENG Yuan, et al. Simulation of slope stability analysis by particle flow code[J]. Rock and Soil Mechanics, 2009, 30 (1): 86-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901021.htm
|
[10] |
POTYONDY D O, CUNDALL P A. Abonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41 (8): 1329-1364.
|
[11] |
WATERS J E, LEE S, GUDURU P R. Mechanics of axisymmetric wavy surface adhesion: JKR-DMT transition solution[J]. International Journal of Solids and Structures, 2009, 46 (5): 1033-1042.
|
[12] |
XU De-wei, LIECHTI K M, RAVI-CHANDAR K, et al. On the modified tabor parameter for the JKR-DMT transition in the presence of a liquid meniscus[J]. Journal of Colloid and Interface Science, 2007, 315 (2): 772-785.
|
[13] |
JI ANG Ying-jun, LI Di, MA Qing-wei, et al. Experimental research on influencing factors of strength properties for graded broken stone[J]. Journal of Transport Science and Engineering, 2010, 26 (1): 6-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX201001003.htm
|
[14] |
LI Di. Research on graded broken stone design standard and design method based on vibrating compaction[D]. Xi'an: Chang'an University, 2010. (in Chinese)
|