XU Guo-min, MA Ming-xing, HUANG Jin-chuan, GUAN Yan-cai. Pressure gradient experiment and influence factor analysis of automotive hydraulic ABS[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 61-68. doi: 10.19818/j.cnki.1671-1637.2011.05.010
Citation: XU Guo-min, MA Ming-xing, HUANG Jin-chuan, GUAN Yan-cai. Pressure gradient experiment and influence factor analysis of automotive hydraulic ABS[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 61-68. doi: 10.19818/j.cnki.1671-1637.2011.05.010

Pressure gradient experiment and influence factor analysis of automotive hydraulic ABS

doi: 10.19818/j.cnki.1671-1637.2011.05.010
More Information
  • Author Bio:

    XU Guo-min(1984-), male, graduate student, + 86-514-87978418, xuguomin1984@126.com

    MA Ming-xing(1974-), male, associate professor, PhD, + 86-514-87978418, mamingxing@yzu.edu.cn

  • Received Date: 2011-05-07
  • Publish Date: 2011-10-25
  • Based on anti-1ock braking system(ABS) hydraulic test bench, PCMCIA-DAQ1200 acquisition card and LabVIEW software were used, the test program of ABS pressure gradient was written, and the data acquisition was realized automatically.The various experimental tests of ABS pressure gradient were carried out including common braking, long-plus and long-reduction braking and step braking.Test result shows that under common braking, the maximum and minimum decompression gradients are -90.5 and -94.8 MPa·s-1 respectively, and the maximum and minimum pressurization gradients are 4.1 and 2.7 MPa·s-1 respectively.Under long-plus and long-reduction braking, the maximum and minimum decompression gradients are -12.1 and -23.0 MPa·s-1 respectively, and the maximum and minimum pressurization gradients are 21.0 and 4.9 MPa·s-1 respectively.Under step braking, the maximum and minimum decompression gradients are -1.2 and -3.2 MPa·s-1 respectively, and the maximum and minimum pressurization gradients are 3.2 and 1.2 MPa·s-1.The main cylinder pressures of common braking, long-plus and long-reduction braking and step braking are 8, 12, 15 MPa respectively.

     

  • loading
  • [1]
    郑太雄, 马付雷. 基于逻辑门限值的汽车ABS控制策略[J]. 交通运输工程学报, 2010, 10(2): 69-74. doi: 10.3969/j.issn.1671-1637.2010.02.013

    ZHENG Tai-xiong, MA Fu-lei. Automotive ABS control strategy based on logic threshold[J]. Journal of Traffic and Transportation Engineering, 2010, 10(2): 69-74. (in Chinese) doi: 10.3969/j.issn.1671-1637.2010.02.013
    [2]
    DEA K. Anti-lock braking performance and hydraulic brake pressure estimation[R]. Detroit: SAE World Congress, 2005.
    [3]
    CABRERA J A, ORTIZ A, CASTILLO J J, et al. A fuzz logic control for antilock braking system integrated in the IMMa tire test bench[J]. IEEE Transactions on Vehicular Technology, 2005, 54(6): 1937-1949. doi: 10.1109/TVT.2005.853479
    [4]
    CHEN Wu-wei, XIAO Han-song, LIULi-qiang, et al. Integrated control of automotive electrical power steering and active suspension systems based on random sub-optimal control[J]. International Journal of Vehicle Design, 2006, 42(3/4): 370-391. doi: 10.1504/IJVD.2006.010438
    [5]
    王会义, 高博. 液压式防抱制动系统电磁阀动作响应试验研究[J]. 液压与气动, 2001(9): 2-4. doi: 10.3969/j.issn.1000-4858.2001.09.002

    WANG Hui-yi, GAO Bo. Experiment on the movement respond of valve in hydraulic anti-lock breaking system[J]. Chinese Hydraulics and Pneumatics, 2001(9): 2-4. (in Chinese) doi: 10.3969/j.issn.1000-4858.2001.09.002
    [6]
    郭孔辉, 刘溧, 丁海涛, 等. 汽车防抱制动系统的液压特性[J]. 吉林工业大学学报: 自然科学版, 1999, 29(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY199904000.htm

    GUO Kong-hui, LIU Li, DING Hai-tao, et al. A study on hydraulic characteristics of anti-lock braking system[J]. Journal of Jilin University of Technology: Natural Sciences, 1999, 29(4): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY199904000.htm
    [7]
    于良耀, 王会义, 宋健, 等. 汽车防抱制动系统中液压系统性能评价与试验[J]. 机械工程学报, 2007, 43(9): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200709011.htm

    YU Liang-yao, WANG Hui-yi, SONG Jian, et al. Performance evaluation and test of anti-lock breaking system hydraulic system[J]. Chinese Journal of Mechanical Engineering, 2007, 43(9): 43-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200709011.htm
    [8]
    李志远, 刘昭度, 崔海峰, 等. 汽车ABS制动轮缸压力变化速率模型试验[J]. 农业机械学报, 2007, 38(9): 6-9. doi: 10.3969/j.issn.1000-1298.2007.09.002

    LI Zhi-yuan, LIU Zhao-du, CUI Hai-feng, et al. Experimental study on change rate model of brake pressure of ABS wheel cylinder[J]. Transactions of the Chinese Society of Agricultural and Mechanical Engineering, 2007, 38(9): 6-9. (in Chinese) doi: 10.3969/j.issn.1000-1298.2007.09.002
    [9]
    陶润, 张红, 付德春, 等. ABS液压系统仿真与电磁阀优化[J]. 农业工程学报, 2010, 26(3): 136-139. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201003024.htm

    TAO Run, ZHANG Hong, FU De-chun, et al. Simulation of ABS hydraulic system and optimization of solenoid valve[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(3): 136-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201003024.htm
    [10]
    刘荣先, 马明星, 叶飞. 汽车电子油门踏板开关信号的测量与性能分析[J]. 交通运输工程学报, 2010, 10(2): 64-68. doi: 10.3969/j.issn.1671-1637.2010.02.012

    LIU Rong-xian, MA Ming-xing, YE Fei. Measurement and performance analysis of switch signal for automotive electrical acceleration pedal[J]. Journal of Traffic and Transportation Engineering, 2010, 10(2): 64-68. (in Chinese) doi: 10.3969/j.issn.1671-1637.2010.02.012
    [11]
    BROUGHTON J, BAUGHAN C. The effectiveness of anti-lock braking systems in reducing accidents in Great Britain[J]. Accident Analysis and Prevention, 2002, 34(3): 347-355. doi: 10.1016/S0001-4575(01)00032-X
    [12]
    罗仁, 邬平波, 刘彬彬. 地铁车辆直线电机恒隙控制仿真[J]. 交通运输工程学报, 2010, 10(4): 50-57. doi: 10.19818/j.cnki.1671-1637.2010.04.009

    LUO Ren, WU Ping-bo, LIU Bin-bin. Constant air gap control simulation of linear induction motor of metro vehicle[J]. Journal of Traffic and Transportation Engineering, 2010, 10(4): 50-57. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2010.04.009
    [13]
    毛务本, 汤彦近, 高继奎. 汽车防抱制动系统控制理论研究[J]. 江苏大学学报: 自然科学版, 2004, 25(6): 482-484. doi: 10.3969/j.issn.1671-7775.2004.06.006

    MAO Wu-ben, TANG Yan-jin, GAO Ji-kui. Design of fuzzy logic controller for anti-lock braking system[J]. Journal of Jiangsu University: Natural Science Edition, 2004, 25(6): 482-484. (in Chinese) doi: 10.3969/j.issn.1671-7775.2004.06.006
    [14]
    梅宗信, 傅勇, 郑文荣. 汽车防抱制动系统液压电磁调节器台架试验方法的探讨[J]. 汽车工程, 2010, 32(4): 314-319. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201004007.htm

    MEI Zong-xin, FU Yong, ZHENG Wen-rong. An investigation into the bench test methods for electromagnetic hydraulic modulator in automotive ABS[J]. Automotive Engineering, 2010, 32(4): 314-319. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201004007.htm
    [15]
    汪继斌. 汽车ABS液压调节器建模与分析[D]. 长春: 吉林大学, 2006.

    WANG Ji-bin. Modeling and analysis of automotive ABS hydraulic modulator[D]. Changchun: Jilin University, 2006. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (716) PDF downloads(463) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return