Citation: | ZHANG Wen-sheng, CUI Zhi-wei. Settlement prediction model of super large bridge for passenger dedicated railway[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 31-36. doi: 10.19818/j.cnki.1671-1637.2011.06.005 |
[1] |
钟承奎, 牛明飞. 关于无穷维耗散非线性动力系统全局吸引子的存在性[J]. 兰州大学学报: 自然科学版, 2003, 39(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200302000.htm
ZHONG Cheng-kui, NIU Ming-fei. On the existence of global attractor for a class of infinite dimensional dissipative nonlinear dynamic systems[J]. Journal of Lanzhou University: Natural Sciences, 2003, 39(2): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200302000.htm
|
[2] |
李凡, 段建立, 吴敏. 采用混沌变异演化算法在边坡稳定分析中的应用[J]. 合肥工业大学学报: 自然科学版, 2002, 25(1): 109-112. doi: 10.3969/j.issn.1003-5060.2002.01.026
LI Fan, DUAN Jian-li, WU Min. Application of an evolution program with chaos mutation to the analysis of slope stability[J]. Journal of Hefei University of Technology: Natural Science, 2002, 25(1): 109-112. (in Chinese) doi: 10.3969/j.issn.1003-5060.2002.01.026
|
[3] |
毕龙珠, 王腾军, 杨海彦, 等. 混沌时间序列在建筑物沉降预测中的应用研究[J]. 测绘信息与工程, 2009, 34(2): 49-51. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG200902024.htm
BI Long-zhu, WANG Teng-jun, YANG Hai-yan, et al. Application of chaos time series to subsidence forecasting[J]. Journal of Geomatics, 2009, 34(2): 49-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG200902024.htm
|
[4] |
夏银飞, 张季如, 夏元友. 混沌时间序列在路基工后沉降中的应用[J]. 华中科技大学学报: 城市科学版, 2005, 22(3): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ200503022.htm
XIA Yin-fei, ZHANG Ji-ru, XIA Yuan-you. Application of chaotic time series on road foundation's sedimentation[J]. Journal of Huazhong University of Science and Technology: Urban Science Edition, 2005, 22(3): 89-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ200503022.htm
|
[5] |
李峰, 宋建军, 董来启, 等. 基于混沌神经网络理论的城市地面沉降量预测模型[J]. 工程地质学报, 2008, 16(5): 715-720. doi: 10.3969/j.issn.1004-9665.2008.05.026
LI Feng, SONG Jian-jun, DONG Lai-qi, et al. Chaos neural network theory based model for quantitative prediction of urban ground subsidence[J]. Journal of Engineering Geology, 2008, 16(5): 715-720. (in Chinese) doi: 10.3969/j.issn.1004-9665.2008.05.026
|
[6] |
ROSE B T. Tennessee rockfall management system[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2005.
|
[7] |
GHOLIPOUR A, ARAABI B, LUCAS C. Predicting chaotic time series using neural and neurofuzzy models: a comparative study[J]. Neural Process Letters, 2006, 24(3): 217-239. doi: 10.1007/s11063-006-9021-x
|
[8] |
陈健. 基坑变形的混沌时间序列分析方法及应用研究[J]. 测绘, 2011, 34(2): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCH201102004.htm
CHEN Jian. Analytic method and application about chaotic foundation pit deformation time-series[J]. Surveying and Mapping, 2011, 34(2): 57-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCCH201102004.htm
|
[9] |
陈铿, 韩伯棠. 混沌时间序列分析中的相空间重构技术综述[J]. 计算机科学, 2005, 32(4): 67-70. doi: 10.3969/j.issn.1002-137X.2005.04.021
CHEN Keng, HAN Bo-tang. A survey of state space reconstruction of chaotic time series analysis[J]. Computer Science, 2005, 32(4): 67-70. (in Chinese) doi: 10.3969/j.issn.1002-137X.2005.04.021
|
[10] |
汤琳, 杨永国. 混沌时间序列分析及应用研究[J]. 武汉理工大学学报, 2010, 32(19): 189-192. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201019046.htm
TANG Lin, YANG Yong-guo. Chaotic time series analysis and its application research[J]. Journal of Wuhan University of Technology, 2010, 32(19): 189-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201019046.htm
|
[11] |
孙海云, 曹庆杰. 混沌时间序列建模及预测[J]. 系统工程理论与实践, 2001, 21(5): 106-113. doi: 10.3321/j.issn:1000-6788.2001.05.017
SUN Hai-yun, CAO Qing-jie. The modeling and forecasting of chaotic time series[J]. Systems Engineering—Theory and Practice, 2001, 21(5): 106-113. (in Chinese) doi: 10.3321/j.issn:1000-6788.2001.05.017
|
[12] |
马红光, 李夕海, 王国华, 等. 相空间重构中嵌入维和时间延迟的选择[J]. 西安交通大学学报, 2004, 38(4): 335-338. doi: 10.3321/j.issn:0253-987X.2004.04.002
MA Hong-guang, LI Xi-hai, WANG Guo-hua, et al. Selection of embedding dimension and delay time in phase space reconstruction[J]. Journal of Xi'an Jiaotong University, 2004, 38(4): 335-338. (in Chinese) doi: 10.3321/j.issn:0253-987X.2004.04.002
|
[13] |
李红霞, 许士国, 徐向舟, 等. 混沌理论在水文领域中的研究现状及展望[J]. 水文, 2007, 27(6): 1-5, 58. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ200706000.htm
LI Hong-xia, XU Shi-guo, XU Xiang-zhou, et al. Current status and prospect of chaos theory research in hydrology[J]. Journal of China Hydrology, 2007, 27(6): 1-5, 58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ200706000.htm
|
[14] |
高雷阜. 煤与瓦斯突出的混沌动力系统演化规律研究[D]. 阜新: 辽宁工程技术大学, 2006.
GAO Lei-fu. Study on chaotic dynamical system evolution of coal and gas outburst[D]. Fuxin: Liaoning Technical University, 2006. (in Chinese)
|
[15] |
AYATT N E, CHERIET M, SUEN C Y. Automatic model selection for the optimization of SVM kernels[J]. Pattern Recognition, 2005, 38(10): 1733-1745. doi: 10.1016/j.patcog.2005.03.011
|
[16] |
LEE P H, CHEN Yi, PEI S C, et al. Evidence of the correlation between positive lyapunov exponents and good chaotic random number sequences[J]. Computer Physics Communications, 2004, 160(3): 187-203. doi: 10.1016/j.cpc.2004.04.001
|
[17] |
KIM H S, EYKHOH R, SALAS J D. Nonlinear dynamics, delay times, and embedding windows[J]. Physicra D: Nonlinear Phenomena, 1999, 127(1/2): 48-60.
|
[18] |
KOJIMA C, RAPISARDA P, TAKABA K. Lyapunov stability analysis of higher-order 2-D systems[C]∥IEEE. Pre-ceedings of the 48th IEEE Conference on Decision and Control. Shanghai: IEEE, 2010: 1734-1739.
|
[19] |
陈益峰, 吕金虎, 周创兵. 基于Lyapunov指数改进算法的边坡位移预测[J]. 岩石力学与工程学报, 2001, 20(5): 671-675. doi: 10.3321/j.issn:1000-6915.2001.05.014
CHEN Yi-feng, LU Jin-hu, ZHOU Chuang-bing. Prediction of slope displacement by using Lyapunov exponent improved technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(5): 671-675. (in Chinese) doi: 10.3321/j.issn:1000-6915.2001.05.014
|
[20] |
郁俊莉, 王其文. Lyapunov指数混沌特性判定研究[J]. 武汉理工大学学报, 2004, 26(2): 90-92. doi: 10.3321/j.issn:1671-4431.2004.02.028
YU Jun-li, WANG Qi-wen. Research of judging the chaotic characteristics with the Lyapunov exponents[J]. Journal of Wuhan University of Technology, 2004, 26(2): 90-92. (in Chinese) doi: 10.3321/j.issn:1671-4431.2004.02.028
|
[21] |
张安兵, 高井祥, 刘新侠, 等. 边坡变形时序非线性判定及混沌预测研究[J]. 中国安全科学学报, 2008, 18(4): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200804009.htm
ZHANG An-bing, GAO Jing-xiang, LIU Xin-xia, et al. Nonlinear test and chaotic prediction of slope deformation sequences[J]. China Safety Science Journal, 2008, 18(4): 55-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200804009.htm
|
[22] |
付义祥, 刘志强. 边坡位移的混沌时间序列分析方法及应用研究[J]. 武汉理工大学学报: 交通科学与工程版, 2003, 27(4): 473-476. doi: 10.3963/j.issn.2095-3844.2003.04.013
FU Yi-xiang, LIU Zhi-qiang. Analytic method and application about chaotic slope deformation destruction time series[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2003, 27(4): 473-476. (in Chinese) doi: 10.3963/j.issn.2095-3844.2003.04.013
|
[23] |
张勇, 关伟. 基于最大Lyapunov指数的多变量混沌时间序列预测[J]. 物理学报, 2009, 58(2): 756-763. doi: 10.3321/j.issn:1000-3290.2009.02.012
ZHANG Yong, GUAN Wei. Predication of multivariable chaotic time series based on maximal Lyapunov exponen[J]. Acta Physica Sinica, 2009, 58(2): 756-763. (in Chinese) doi: 10.3321/j.issn:1000-3290.2009.02.012
|
[24] |
张勇, 关伟. 基于最大李亚普诺夫指数的改进混沌时间序列预测[J]. 信息与控制, 2009, 38(3): 360-364. doi: 10.3969/j.issn.1002-0411.2009.03.019
ZHANG Yong, GUAN Wei. An improved method for forecasting chaotic time series based on maximum Lyapunov exponent[J]. Information and Control, 2009, 38(3): 360-364. (in Chinese) doi: 10.3969/j.issn.1002-0411.2009.03.019
|
[25] |
向昌盛, 张林峰. 混沌时间序列预测模型参数同步优化[J]. 计算机工程与应用, 2011, 47(1): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201101003.htm
XIANG Chang-sheng, ZHANG Lin-feng. Simultaneous optimization of chaotic time series prediction model parameters[J]. Computer Engineering and Applications, 2011, 47(1): 4-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201101003.htm
|
[26] |
韩敏, 魏茹. 基于改进典型相关分析的混沌时间序列预测[J]. 大连理工大学学报, 2008, 48(2): 292-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200802026.htm
HAN Min, WEI Ru. Chaotic time series prediction based on modified canonical correlation analysis[J]. Journal of Dalian University of Technology, 2008, 48(2): 292-297. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200802026.htm
|