GONG Bo-wen, LIN Ci-yun, YANG Zhao-sheng, LI Jing. Calculation method of central guidance path optimization[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 106-113, 126. doi: 10.19818/j.cnki.1671-1637.2011.06.017
Citation: GONG Bo-wen, LIN Ci-yun, YANG Zhao-sheng, LI Jing. Calculation method of central guidance path optimization[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 106-113, 126. doi: 10.19818/j.cnki.1671-1637.2011.06.017

Calculation method of central guidance path optimization

doi: 10.19818/j.cnki.1671-1637.2011.06.017
More Information
  • Author Bio:

    GONG Bo-wen(1982-), female, lecturer, PhD, +86-431-85095767, gongbowen1982@gmail.com

  • Received Date: 2011-07-15
  • Publish Date: 2011-12-25
  • Based on parallel calculation technology and network data storage method, traveler preferences were considered, the multi-level network decomposing method and the shortest path calculation method of deque were analyzed, and a new central guidance path optimization calculation method was put out. On the basis of the practical data of road networks in Changsha City and Changchun City, and tests on three different parallel calculation platforms including ordinary PC cluster, Lenovo server cluster and HP workstation cluster were carried out. Test result indicates that by using network data storage method, the storage locations of adjacency nodes and corresponding arcs can be determined directly, and the query time of node information obviously decreases. According to multi-level network decomposing method, the probability of main road as cutted arc reduces, and the commutation amounts of processors during the shortest path calculation process reduce. By using the shortest path calculation method of deque, the calculation speed of shortest path obviously increases. Through the new calculation method, the calculation time of 4 million shortest paths in Changsha City is 46 s, the calculation time of 11.7 million shortest paths in Changchun City is 72 s, and both of them satisfy the demand that central guidance path optimization time should be less than 5 rain.

     

  • loading
  • [1]
    TOMKEWITSCH R V. Dynamic route guidance and interactive transport management with ALI-SCOUT[J]. IEEE Transactions on Vehicular Technology, 1991, 40(1): 45-50. doi: 10.1109/25.69971
    [2]
    张赫, 杨兆升, 王伟. 基于实时交通流信息的中心式动态路径诱导系统行车路线优化技术研究[J]. 公路交通科技, 2004, 21(9): 91-94. doi: 10.3969/j.issn.1002-0268.2004.09.024

    ZHANG He, YANG Zhao-sheng, WANG Wei. Research on vehicle route optimization of centrally dynamic route guidance systems based on real-time traffic flow information[J]. Journal of Highway and Transportation Research and Development, 2004, 21(9): 91-94. (in Chinese) doi: 10.3969/j.issn.1002-0268.2004.09.024
    [3]
    DEO N, PANG Chi-yin. Shortest path algorithms: taxonomy and annotation[J]. Networks, 1984, 14(2): 275-323. doi: 10.1002/net.3230140208
    [4]
    O'CEARBHAILL E A, O'MAHONY M. Parallel implementation of a transportation network model[J]. Journal of Parallel and Distributed Computing, 2005, 65(1): 1-14. doi: 10.1016/j.jpdc.2004.07.003
    [5]
    王媛. 大范围战略交通协调控制系统关键技术研究[D]. 长春: 吉林大学, 2009.

    WANG Yuan. Research on key technologies of large-scale strategic traffic coordination and control system[D]. Changchun: Jilin University, 2009. (in Chinese)
    [6]
    李丽丽. 基于拓扑关系的导航电子地图增量更新关键技术研究[D]. 长春: 吉林大学, 2009.

    LI Li-li. Key technology research of incremental updating of electronic navigation map based on topological relationship[D]. Changchun: Jilin University, 2009. (in Chinese)
    [7]
    陈洁, 陆锋. 一种基于双端队列的交通网络最短路径Pallottino优化算法[J]. 中国图象图形学报, 2006, 11(3): 419-424. doi: 10.3969/j.issn.1006-8961.2006.03.019

    CHEN Jie, LU Feng. An optimization algorithm of Pallottino implemented with two queues in transportation network[J]. Journal of Image and Graphics, 2006, 11(3): 419-424. (in Chinese) doi: 10.3969/j.issn.1006-8961.2006.03.019
    [8]
    SUNDELL H, TSIGAS P. Lock-free deques and doubly linked lists[J]. Journal of Parallel and Distributed Computing, 2008, 68(7): 1008-1020. doi: 10.1016/j.jpdc.2008.03.001
    [9]
    MEYERHENKE H, MONIEN B, SAUERWALD T. A new diffusion-based multilevel algorithm for computing graph partitions[J]. Journal of Parallel and Distributed Computing, 2009, 69(9): 750-761. doi: 10.1016/j.jpdc.2009.04.005
    [10]
    KARYPIS G, KUMAR V. Multilevel k-way partitioning scheme for irregular graphs[J]. Journal of Parallel and Distributed Computing, 1998, 58(1): 96-129.
    [11]
    ZHAN F B, NOON C E. Shortest path algorithms: an evaluation using real road networks[J]. Transportation Science, 1998, 32(1): 65-73. doi: 10.1287/trsc.32.1.65
    [12]
    ZHAN F B. Three fastest shortest path algorithms on real road networks: data structures and procedures[J]. Journal of Geographic Information and Decision Analysis, 1997, 1(1): 70-82.
    [13]
    MEYER U. Design and analysis of sequential and parallel single-source shortest-paths algorithms[D]. Saarbrücken: Universität des Saarlandes, 2002.
    [14]
    MEYER U, SANDERS P. Δ-stepping: aparallelizable shortest path algorithm[J]. Journal of Algorithms, 2003, 49(1): 114-152.
    [15]
    KARYPIS G, KUMAR V. Multilevel k-way hypergraph partitioning[J]. VLSI Design, 2000, 11(3): 343-348
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (752) PDF downloads(753) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return