SUN Di-hua, ZHANG Jian-chang, LIAO Xiao-yong, TIAN Chuan, LI Yong-fu, LIU Wei-ning. Optimal velocity difference model of non-neighboring vehicles[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 114-118. doi: 10.19818/j.cnki.1671-1637.2011.06.018
Citation: SUN Di-hua, ZHANG Jian-chang, LIAO Xiao-yong, TIAN Chuan, LI Yong-fu, LIU Wei-ning. Optimal velocity difference model of non-neighboring vehicles[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 114-118. doi: 10.19818/j.cnki.1671-1637.2011.06.018

Optimal velocity difference model of non-neighboring vehicles

doi: 10.19818/j.cnki.1671-1637.2011.06.018
More Information
  • Author Bio:

    SUN Di-hua (1962-), male, professor, PhD, +86-23-65106953, d3sun@163.com

  • Received Date: 2011-07-23
  • Publish Date: 2011-12-25
  • The optimal velocity model, generalized force model and full velocity difference model were described, and the deficiencies of these models solving traffic flow problem were analyzed.On the basis of full velocity difference model, the concern degree of driver on the optimial velocity difference information of two non-neighboring preceding vehicles was considered, and the optimal velocity difference model was put out.Through linear stability analysis, the stability condition of traffic flow was obtained.By using numerical simulation, optimal velocity difference model and full velocity difference model were compared.Simulation result shows that by using optimal velocity difference model, the sensitive coefficient of critical stability curve becomes smaller, free flow region increases obviously.While sensitive coefficient is 0.310 0 s-1, traffic flow stability strengthens, and the phenomenon of negative velocity does not appear.While sensitive coefficient is 0.777 8 s-1, and reaction coefficient is 0.2, vehicle velocities can basically maintain 0.963 5 m·s-1.With the increase of reaction coefficient, the produce hysteresis loops of velocities gradually tend to a point.So the optimal velocity difference model is effective.

     

  • loading
  • [1]
    贾宁, 马寿峰. 考虑摩擦干扰的机非混合交通流元胞自动机仿真[J]. 系统仿真学报, 2011, 23(2): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201102036.htm

    JIA Ning, MA Shou-feng. Simulation of mixed traffic flow with friction interference using cellular automata[J]. Journal of System Simulation, 2011, 23(2): 390-394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201102036.htm
    [2]
    钱勇生, 曾俊伟, 杜加伟, 等. 考虑意外事件对交通流影响的元胞自动机交通流模型[J]. 物理学报, 2011, 60(6): 103-112. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201106018.htm

    QIAN Yong-sheng, ZENG Jun-wei, DU Jia-wei, et al. Cellular automaton traffic flow model considering influence of accidents[J]. Acta Physica Sinica, 2011, 60(6): 103-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201106018.htm
    [3]
    BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042. doi: 10.1103/PhysRevE.51.1035
    [4]
    CHRISTOPH W. Asymptotic solutions for a multi-anticipative car-following model[J]. Physica A, 1998, 260(4): 218-224.
    [5]
    ZHU Hui-bing, DAI Shi-qiang. Analysis of car-following model considering driver's physical delay in sensing headway[J]. Physica A, 2008, 387(13): 3290-3298. doi: 10.1016/j.physa.2008.01.103
    [6]
    SIPAHI R, NICULESCU S I. Stability of car following with human memory effects and automatic headway compensation[J]. Philosophical Transactions of Royal Society, 2010, 368(1928): 4563-4583.
    [7]
    孙棣华, 李永福, 田川. 基于多前车位置及速度差信息的车辆跟驰模型[J]. 系统工程理论与实践, 2010, 30(7): 1326-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201007027.htm

    SUN Di-hua, LI Yong-fu, TIAN Chuan. Car-following model based on the information of multiple ahead and velocity difference[J]. Systems Engineering—Theory and Practice, 2010, 30(7): 1326-1332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201007027.htm
    [8]
    HELBING D, TILCH B. Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58(1): 133-138. doi: 10.1103/PhysRevE.58.133
    [9]
    JIANG Rui, WU Qing-song, ZHU Zuo-jin. Full velocity difference model for a car following theory[J]. Physical Review E, 2001, 64(1): 63-66.
    [10]
    王涛, 高自友, 赵小梅. 多速度差模型及稳定性分析[J]. 物理学报, 2006, 55(2): 634-640. doi: 10.3321/j.issn:1000-3290.2006.02.028

    WANG Tao, GAO Zi-you, ZHAO Xiao-mei. Multiple velocity difference model and its stability analysis[J]. Acta Physica Sinica, 2006, 55(2): 634-640. (in Chinese) doi: 10.3321/j.issn:1000-3290.2006.02.028
    [11]
    彭光含, 孙棣华, 何恒攀. 交通流双车跟驰模型与数值仿真[J]. 物理学报, 2008, 57(12): 7541-7546. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200812023.htm

    PENG Guang-han, SUN Di-hua, HE Heng-pan. Two-car following model of traffic flow and numerical simulation[J]. Acta Physica Sinica, 2008, 57(12): 7541-7546. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200812023.htm
    [12]
    彭光含. 交通流复杂耦合动态特性模拟研究[D]. 重庆: 重庆大学, 2009.

    PENG Guang-han. Simulation research on complicated coupling dynamical characteristics of traffic flow[D]. Chongqing: Chongqing University, 2009. (in Chinese)
    [13]
    TIAN Jun-fang, JIA Bin, LI Xin-gang, et al. A new car-following model considering velocity anticipation[J]. Chinese Physics B, 2010, 19(1): 197-203.
    [14]
    TREIBER M, HENNECHE A, HELBING D. Derivation, properties, and simulation of a gas-kinetic-based, nonlocal traffic model[J]. Physical Review E, 1999, 59(1): 239-253.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (823) PDF downloads(764) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return