WEN Chao, PENG Qi-yuan, CHEN Yu-hong. Running conflict mechanism of high-speed railway tarin[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 119-126. doi: 10.19818/j.cnki.1671-1637.2012.02.017
Citation: WEN Chao, PENG Qi-yuan, CHEN Yu-hong. Running conflict mechanism of high-speed railway tarin[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 119-126. doi: 10.19818/j.cnki.1671-1637.2012.02.017

Running conflict mechanism of high-speed railway tarin

doi: 10.19818/j.cnki.1671-1637.2012.02.017
More Information
  • Author Bio:

    WEN Chao(1984-), male, lecturer, PhD, +86-28-87600757, wenchao0601@126.com

  • Received Date: 2011-11-23
  • Publish Date: 2012-04-25
  • During the running process of high-speed railway train, the distribution regularity and cumulative process of random interference were analyzed.The status deviation map of running plan was used, and the change mechanism of running delay for high-speed railway train was described.During the running process of high-speed railway train, the distribution regularity and utilization process of redundancy time were analyzed.The status recovery map of running plan was used, and the process that redundancy time assimilated delay time was described.Based on the interacting process of running interference and utilization process of redundancy time, the generation mechanism of running conflict for high-speed railway train was studied, and the recurrent process of running status for high-speed railway train under the interaction of random interference and redundancy time was set up.The simulation system of running interference, redundancy time and conflict was developed by Yi language.While interference probabilities were 50% and 30% respectively and redundancy time proportions were 15% and 10% respectively, the generation mechanisms of running conflict for high-speed railway train under 4 conditions were simulated.Simulation result indicates that random interference can lead to the generation of running conflict, and redundancy time can absorb delay and reduce conflict numbers.The smaller random interference is, the fewer running conflict is.When interference probability reduces by 20%, the running conflict number reduces by 17.3%.The bigger delay is, the larger available redundancy time is.When the proportion of redundancy time increases by 5%, the coefficient of conflict absorption increases by 6.5%.The redundancy time plays more obvious role on absorbing running conflict when there are little interference probability and small total interference.

     

  • loading
  • [1]
    MAKKINGA F, METSELAAR S. Automatic conflict detection and decision support for optimal usage of railway infrastructure[C]//ALLAN J, HILL R J, BREBBIA C A, et al. Seventh International Conference on Computers in Railways VII. Southampton: WIT Press, 2000: 1057-1064.
    [2]
    GOVERDE R M P, HANSEN I A. TNV-prepare: analysis of dutch railway operations based on train detection data[C]//ALLAN J, HILL R J, BREBBIA C A, et al. Seventh International Conference on Computers in Railways VII. Southampton: WIT Press, 2000: 779-788.
    [3]
    YUAN Jian-xin, HANSEN I A. Optimizing capacity utiliza-tion of stations by estimating knock-on train delays[J]. Transportation Research Part B: Methodological, 2007, 41(2): 202-217. doi: 10.1016/j.trb.2006.02.004
    [4]
    GOVERDE R M P. Railway timetable stability analysis using max-plus system theory[J]. Transportation Research Part B: Methodological, 2007, 41(2): 179-201. doi: 10.1016/j.trb.2006.02.003
    [5]
    ALEXANDER F. A fuzzy knowledge-based system for rail-way traffic control[J]. Engineering Applications of Artificial Intelligence, 2000, 13(6): 719-729. doi: 10.1016/S0952-1976(00)00027-0
    [6]
    OH S M, HONG S H, CHOI I C. Railway conflict detection and resolution in the Korean railway system[C]//ALLAN J, HILL R J, BREBBIA C A, et al. Seventh International Conference on Computers in Railways IX. Southampton: WIT Press, 2004: 675-684.
    [7]
    JOHANNA T. Computer-based decision support for railway traffic scheduling and dispatching: a review of models and algorithms[C]//KROON L G, ROLF H M. The 5th Workshop on Algorithmic Methods and Models for Optimization of Railways. Wadern: Leibniz Center for Informatics, 2006: 1-23.
    [8]
    MOZZARELLA M, OTTAVIANI E. A traffic management system for real-time traffic optimization in railways[J]. Transportation Research Part B: Methodological, 2007, 41(2): 246-274. doi: 10.1016/j.trb.2006.02.005
    [9]
    TSANG C W, HO T K. The conflict resolution at connected railway junctions[C]//IU V P, LAMAS L N, LI Y P, et al. Proceedings of the 9th International Conference EPMESC IX. New York: Taylor and Francis, 2003: 987-993.
    [10]
    D'ARIANO A, PRANZO M, HANSEN I A. Conflict reso-lution and train speed coordination for solving real-time time-table perturbations[J]. IEEE Transactions on Intelligent Transportation System, 2007, 8(2): 208-222. doi: 10.1109/TITS.2006.888605
    [11]
    ALBRECHT T. The Influence of anticipating train driving on the dispatching process in railway conflict situations[J]. Networks and Spatial Economics, 2009, 9(1): 85-101. doi: 10.1007/s11067-008-9089-0
    [12]
    CHENG Y H, YANG Li-an. A fuzzy petri nets approach for railway traffic control in case of abnormality: evidence from Taiwan railway system[J]. Expert Systems with Applica-tions, 2009, 36(4): 8040-8048. doi: 10.1016/j.eswa.2008.10.070
    [13]
    聂磊, 张星臣, 赵鹏, 等. 高速铁路列车运行计划调整策略的研究[J]. 铁道学报, 2001, 23(4): 1-6. doi: 10.3321/j.issn:1001-8360.2001.04.001

    NIE Lei, ZHANG Xing-chen, ZHAO Peng, et al. Study on the strategy of train operation adjustment on high speed rail-way[J]. Journal of the China Railway Society, 2001, 23(4): 1-6. (in Chinese). doi: 10.3321/j.issn:1001-8360.2001.04.001
    [14]
    史峰, 黎新华, 秦进, 等. 单线列车运行调整的最早冲突优化方法[J]. 中国铁道科学, 2005, 26(1): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200501020.htm

    SHI Feng, LI Xin-hua, QIN Jin, et al. The earliest conflict optimal method for train operation adjustment on single track railway[J]. China Railway Science, 2005, 26(1): 106-113. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200501020.htm
    [15]
    文超, 彭其渊, 文欢. 高速铁路列车运行冲突管理研究现状综述[J]. 中国安全科学学报, 2010, 20(5): 140-150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201005027.htm

    WEN Chao, PENG Qi-yuan, WEN Huan. Review on conflict management of train operation on high-speed railway[J]. China Safety Science Journal, 2010, 20(5): 140-150. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201005027.htm
    [16]
    文超, 彭其渊, 陈芋宏. 高速铁路列车运行冲突管理总论[J]. 中国安全科学学报, 2010, 20(10): 8-12. doi: 10.3969/j.issn.1003-3033.2010.10.002

    WEN Chao, PENG Qi-yuan, CHEN Yu-hong. Pandect on the operation conflict management of high-speed train[J]. China Safety Science Journal, 2010, 20(10): 8-12. (in Chinese). doi: 10.3969/j.issn.1003-3033.2010.10.002
    [17]
    田钊. 基于一类混合Petri网的列车运行系统中冲突因素的分析[D]. 郑州: 郑州大学, 2011.

    TIAN Zhao. Conflict analysis of train operation system based on a class of hybrid Petri nets[D]. Zhengzhou: Zhengzhou University, 2011. (in Chinese).
    [18]
    陈荣武, 刘莉, 郭进. 基于遗传算法的列车运行能耗优化算法[J]. 交通运输工程学报, 2012, 12(1): 108-114. doi: 10.3969/j.issn.1671-1637.2012.01.017

    CHEN Rong-wu, LIU Li, GUO Jin. Optimization algorithm of train operation energy consumption based on genetic algo-rithm[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 108-114. (in Chinese). doi: 10.3969/j.issn.1671-1637.2012.01.017
    [19]
    周文梁, 史峰, 陈彦, 等. 客运专线网络列车开行方案与运行图综合优化方法[J]. 铁道学报, 2011, 33(2): 1-7. doi: 10.3969/j.issn.1001-8360.2011.02.001

    ZHOU Wen-liang, SHI Feng, CHEN Yan, et al. Method of integrated optimization of train operation plan and diagram for network of dedicated passenger lines[J]. Journal of the China Railway Society, 2011, 33(2): 1-7. (in Chinese). doi: 10.3969/j.issn.1001-8360.2011.02.001
    [20]
    贾晓秋, 关晓宇. 列车运行图布线方法研究[J]. 铁道运输与经济, 2011, 33(4): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201104021.htm

    JIA Xiao-qiu, GUAN Xiao-yu. Research on routing method of train operation diagram[J]. Railway Transport and Economy, 2011, 33(4): 81-84. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201104021.htm
    [21]
    周伟, 秦世引, 万百五. 列车运行调整问题研究现状及发展趋势[J]. 系统工程, 1997, 15(2): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT199702003.htm

    ZHOU Wei, QIN Shi-yin, WAN Bai-wu. The train operation adjustment: current status and prospects[J]. Systems Engin-eering, 1997, 15(2): 17-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT199702003.htm
    [22]
    金福才, 胡思继, 刘智丽. 列车运行调整方案实时安全诊断算法研究[J]. 中国安全科学学报, 2004, 14(1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200401015.htm

    JIN Fu-cai, HU Si-ji, LIU Zhi-li. Real-time safety diagnosis algorithm of train operation adjustment plan[J]. China Safety Science Journal, 2004, 14(1): 53-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200401015.htm
    [23]
    周学松, 朱钰, 胡思继. 基于列车运行状态推导图的列车运行调整算法[J]. 铁道学报, 1999, 21(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199906000.htm

    ZHOU Xue-song, ZHU Yu, HU Si-ji. Research on the algo-rithm for train regulation based on train running state deriva-tion graph[J]. Journal of the China Railway Society, 1999, 21(6): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199906000.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (788) PDF downloads(842) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return