Citation: | LI Gang, HE Shuan-hai, DU Kai, LIU Wei, DU Qin-wen. Modified C-V model algorithm of crack extraction for bridge substructure[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 9-16. doi: 10.19818/j.cnki.1671-1637.2012.04.002 |
[1] |
DILENA M, MORASSI A. Dynamic testing of a damaged bridge[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 1485-1507. https://www.sciencedirect.com/science/article/pii/S0888327011000094
|
[2] |
KIM C W, KAWATANI M, OZAKI R, et al. Recovering missing data transmitted from a wireless sensor node for vibration-based bridge health monitoring[J]. Structural Engin-eering and Mechanics, 2011, 38(4): 417-428. doi: 10.12989/sem.2011.38.4.417
|
[3] |
ABDEL-QADER I, ABUDAYYEH O, KELLY M E. Analy-sis of edge-detection techniques for crack identification in bridges[J]. Journal of Computing in Civil Engineering, 2003, 17(4): 255-263. doi: 10.1061/(ASCE)0887-3801(2003)17:4(255)
|
[4] |
HUTCHINSON T C, CHEN Zhi-qiang. Improved imageanalysis for evaluating concrete damage[J]. Journal of Com-puting in Civil Engineering, 2006, 20(3): 210-216. doi: 10.1061/(ASCE)0887-3801(2006)20:3(210)
|
[5] |
NAVON E, MILLER O, AVERBUCH A. Color image segmentation based on adaptive local thresholds[J]. Image and Vision Computing, 2005, 23(1): 69-85. doi: 10.1016/j.imavis.2004.05.011
|
[6] |
IYER S, SINHA S K. Segmentation of pipe images for crack detection in buried sewers[J]. Computer-Aided Civil and Infrastructure Engineering, 2006, 21(6): 395-410. doi: 10.1111/j.1467-8667.2006.00445.x
|
[7] |
YU S N, JANG J H, HAN C S. Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel[J]. Automation in Construction, 2007, 16(3): 255-261. doi: 10.1016/j.autcon.2006.05.003
|
[8] |
SINHA S K, FIEGUTH P W. Automated detection ofcracks in buried concrete pipe images[J]. Automation in Con-struction, 2006, 15(1): 58-72. doi: 10.1016/j.autcon.2005.02.006
|
[9] |
ZOU Qin, CAO Yu, LI Qing-quan, et al. CrackTree: auto-matic crack detection from pavement images[J]. PatternRecognition Letters, 2012, 33(3): 227-238. https://www.sciencedirect.com/science/article/pii/S0167865511003795
|
[10] |
OH J K, JANG G, OH S, et al. Bridge inspection robot sys-tem with machine vision[J]. Automation in Construction, 2009, 18(7): 929-941. doi: 10.1016/j.autcon.2009.04.003
|
[11] |
ZHU Zhen-hua, GERMAN S, BRILAKIS I. Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation[J]. Automation in Construction, 2011, 20(7): 874-883. doi: 10.1016/j.autcon.2011.03.004
|
[12] |
YAMAGUCHI T, HASHIMOTO S. Fast crack detection method for large-size concrete surface images using percolation-based image processing[J]. Machine Vision and Applications, 2010, 21(5): 797-809. doi: 10.1007/s00138-009-0189-8
|
[13] |
YANG Ming-yu, DING Huan, ZHAO Bo, et al. Chan-Vese model image segmentation with neighborhood information[J]. Journal of Computer-Aided Design & Computer Graphics, 2001, 23(3): 413-418. https://www.researchgate.net/publication/284555111_Chan-Vese_model_image_segmentation_with_neighborhood_information
|
[14] |
XIAO Chun-xia, CHU Yu, ZHANG Qing. Texture image segmentation using level set function evolved by Gaussian mixture model[J]. Chinese Journal of Computers, 2010, 33(7): 1295-1304. doi: 10.3724/SP.J.1016.2010.01295
|
[15] |
LI Chun-ming, KAO C Y, GORE J C, et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1940-1949. doi: 10.1109/TIP.2008.2002304
|
[16] |
ZHANG Kai-hua, ZHANG Lei, SONG Hui-hui, et al. Activecontours with selective local or global segmentation: a newformulation and level set method[J]. Image and Vision Com-puting, 2010, 28(6): 668-676. https://www.sciencedirect.com/science/article/pii/S0262885609002303
|