Citation: | CAO Yuan, MA Lian-chuan, LI Wang. Monitoring method of safety computer condition for railway signal system[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 107-112. doi: 10.19818/j.cnki.1671-1637.2013.03.015 |
[1] |
曹源, 唐涛, 徐田华, 等. 形式化方法在列车运行控制系统中的应用[J]. 交通运输工程学报, 2010, 10(1): 112-126. http://transport.chd.edu.cn/article/id/201001020
CAO Yuan, TANG Tao, XU Tian-hua, et al. Application of formal methods in train control system[J]. Journal of Traffic and Transportation Engineering, 2010, 10(1): 112-126. (in Chinese). http://transport.chd.edu.cn/article/id/201001020
|
[2] |
陈珊, 王太勇, 王国锋, 等. 机械设备智能诊断与预测维修系统[J]. 西南交通大学学报, 2003, 38(5): 540-543. doi: 10.3969/j.issn.0258-2724.2003.05.013
CHEN Shan, WANG Tai-yong, WANG Guo-feng, et al. Intelligent fault diagnosis, prediction and maintenance system of mechanical equipment[J]. Journal of Southwest Jiaotong University, 2003, 38(5): 540-543. (in Chinese). doi: 10.3969/j.issn.0258-2724.2003.05.013
|
[3] |
VICHARE N M, PECHT M G. Prognostics and health management of electronics[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(1): 222-229. doi: 10.1109/TCAPT.2006.870387
|
[4] |
OWSLEY L M D, ATLASL E, BERNARD G D. Self-organizing feature maps and hidden Markov models formachine-tool monitoring[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2787-2798. doi: 10.1109/78.650105
|
[5] |
SMYTH P. Hidden Markov models and neural networks for fault detection in dynamic systems[C]∥IEEE. Proceedings of Neural Networks for Signal Processing. Boise: IEEE, 1993: 582-592.
|
[6] |
ATLAS L, OSTENDORF M, BERNARD G D. Hidden Markov models for monitoring machining tool-wear[C]∥IEEE. Proceedings of the Acoustics, Speech, and Signal Processing. Istanbul: IEEE, 2000: 3887-3890.
|
[7] |
OCAK H, LOPARO K A. A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals[C]∥IEEE. Proceedings of the Acoustics, Speech, and Signal Processing. Salt Lake City: IEEE, 2001: 3141-3144.
|
[8] |
ZHAO Yun-xin, ATLAS L E, ZHUANG Xin-hua. Application of the gibbs distribution to hidden Markov modeling in speaker independent isolated word recognition[J]. IEEE Transactions on Signal Processing, 1991, 39(6): 1291-1299. doi: 10.1109/78.136535
|
[9] |
林果园, 郭山清, 黄皓, 等. 基于动态行为和特征模式的异常检测模型[J]. 计算机学报, 2006, 29(9): 1553-1560. doi: 10.3321/j.issn:0254-4164.2006.09.006
LIN Guo-yuan, GUO Shan-qing, HUANG Hao, et al. An anomaly detection model based on dynamic behavior and character patterns[J]. Chinese Journal of Computers, 2006, 29(9): 1553-1560. (in Chinese). doi: 10.3321/j.issn:0254-4164.2006.09.006
|
[10] |
冯长建. HMM动态模式识别理论、方法以及在旋转机械故障诊断中的应用[D]. 杭州: 浙江大学, 2002.
FENG Chang-jian. HMM dynamical pattern recognition the-ories, methods and applications in faults diagnosis of rotating machine[D]. Hangzhou: Zhejiang University, 2002. (in Chinese).
|
[11] |
王剑, 张辉, 蔡伯根, 等. 基于HMM的列车轨道占用自动识别算法研究[J]. 铁道学报, 2009, 31(3): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200903011.htm
WANG Jian, ZHANG Hui, CAI Bai-gen, et al. The algorithm of automatic track occupying identification based on HMM[J]. Journal of the China Railway Society, 2009, 31(3): 54-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200903011.htm
|
[12] |
QIAO Y, XIN X W, BIN Y, et al. Anomaly intrusion detection method based on HMM[J]. Electronics Letters, 2002, 38(13): 663-664. doi: 10.1049/el:20020467
|
[13] |
宋雪萍, 马辉, 刘杰, 等. 基于HMM的故障诊断特征提取和聚类技术[J]. 振动、测试与诊断, 2006, 26(2): 92-96, 157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200602001.htm
SONG Xue-ping, MA Hui, LIU Jie, et al. Feature extraction and clustering technique of rotating machinery fault diagnose based on HMM[J]. Journal of Vibration, Measurement and Diagnosis, 2006, 26(2): 92-96, 157. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS200602001.htm
|
[14] |
RABINER L R, JUANG B H. An introduction to hidden Markov models[J]. IEEE ASSP Magazine, 1986, 3(1): 4-16.
|
[15] |
PECK R, NESS J. The use of shrinkage estimators in linear discriminant analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4(5): 530-537.
|