Citation: | CUI Hua, ZHANG Xiao, GUO Lu, YUAN Chao, XUE Shi-jiao, SONG Huan-sheng. Cascade AdaBoost pedestrian detector with multi-features and multi-thresholds[J]. Journal of Traffic and Transportation Engineering, 2015, 15(2): 109-117. doi: 10.19818/j.cnki.1671-1637.2015.02.012 |
[1] |
郭立君, 刘曦, 赵杰煜, 等. 结合运动信息与表观特征的行人检测方法[J]. 软件学报, 2012, 23(2): 299-309. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201202012.htm
GUO Li-jun, LIU Xi, ZHAO Jie-yu, et al. Pedestrian detection method of integrated motion information and appearance features[J]. Journal of Software, 2012, 23(2): 299-309. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201202012.htm
|
[2] |
NEGRI P, GOUSSIES N, LOTITO P. Detecting pedestrians on a movement feature space[J]. Pattern Recognition, 2014, 47(1): 56-71. doi: 10.1016/j.patcog.2013.05.020
|
[3] |
DOLLÁR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: an evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743-761. doi: 10.1109/TPAMI.2011.155
|
[4] |
BORGES P V K. Pedestrian detection based on blob motion statistics[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(2): 224-235. doi: 10.1109/TCSVT.2012.2203217
|
[5] |
GAVRILA D M. A Bayesian, exemplar-based approach to hierarchical shape matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1408-1421. doi: 10.1109/TPAMI.2007.1062
|
[6] |
PRIOLETTI A, MØGELMOSE A, GRISLERI P, et al. Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms, and evaluation[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1346-1359. doi: 10.1109/TITS.2013.2262045
|
[7] |
ENZWEILER M, GAVRILA D M. Monocular pedestrian detection: survey and experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2179-2195.
|
[8] |
VÁZQUEZ D, LÓPEZ A M, MARÍN J, et al. Virtual and real world adaptation for pedestrian detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 797-809.
|
[9] |
CAO Xian-bin, WANG Zhong, YAN Ping-kun, et al. Transfer learning for pedestrian detection[J]. Neurocomputing, 2013, 100: 51-57.
|
[10] |
CHENG Wen-chang, JHAN D M. A self-constructing cascade classifier with AdaBoost and SVM for pedestrian detection[J]. Engineering Applications of Artificial Intelligence, 2013, 26(3): 1016-1028.
|
[11] |
汤义. 智能交通系统中基于视频的行人检测与跟踪方法的研究[D]. 广州: 华南理工大学, 2010.
TANG Yi. Study on video-based detection and tracking method of pedestrian in ITS[D]. Guangzhou: South China University of Technology, 2010. (in Chinese).
|
[12] |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]∥IEEE. Proceedings of the 2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2005: 886-893.
|
[13] |
邵枭虎. 基于AdaBoost与显著信息的行人检测算法[D]. 成都: 电子科技大学, 2012.
SHAO Xiao-hu. The algorithm of pedestrian detection based on AdaBoost and saliency information[D]. Chengdu: University of Electronic Science and Technology of China, 2012. (in Chinese).
|
[14] |
MEYNET J, POPOVICI V, THIRAN J P. Face detection with boosted Gaussian features[J]. Pattern Recognition, 2007, 40(8): 2283-2291.
|
[15] |
TIAN Hong, DUAN Zhu, ABRAHAM A, et al. A novel multiplex cascade classifier for pedestrian detection[J]. Pattern Recognition Letters, 2013, 34(14): 1687-1693.
|
[16] |
常峰, 杨彬, 窦建华. 基于多特征和级联分类器的行人检测算法[J]. 合肥工业大学学报: 自然科学版, 2014, 37(12): 1456-1461. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201412010.htm
CHANG Feng, YANG Bin, DOU Jian-hua. Pedestrian detection algorithm with multiple feature and cascade classifier[J]. Journal of Hefei University of Technology: Natural Science, 2014, 37(12): 1456-1461. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE201412010.htm
|
[17] |
李梦涵, 熊淑华, 熊文, 等. 多尺度级联行人检测算法的研究与实现[J]. 计算机技术与发展, 2014, 24(8): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201408003.htm
LI Meng-han, XIONG Shu-hua, XIONG Wen, et al. Research and realization of pedestrian detection algorithm by multi-scale cascaded features[J]. Computer Technology and Development, 2014, 24(8): 10-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201408003.htm
|
[18] |
程如中, 赵勇, 王执中, 等. 实时行人检测预警系统[J]. 交通运输工程学报, 2012, 12(5): 110-118, 126. http://transport.chd.edu.cn/article/id/201205015
CHENG Ru-zhong, ZHAO Yong, WONG Chup-chung, et al. Real-time pedestrian detecting and warning system[J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 110-118, 126. (in Chinese). http://transport.chd.edu.cn/article/id/201205015
|
[19] |
FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to Boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
|
[20] |
SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions[J]. Machine Learning, 1999, 37(3): 297-336.
|
[21] |
GERÓNIMO D, LÓPEZ A M, SAPPA A D, et al. Survey of pedestrian detection for advanced driver assistance systems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1239-1258.
|
[22] |
DENG Jin-hao, ZHU Juan. Research on pedestrian detection algorithms based on video[C]∥IEEE. 2010IEEE Conference on Computer Design and Applications. New York: IEEE, 2010: 474-478.
|
[23] |
LEE Y D, LI Z Z, ZHANG S R, et al. Safety impacts of red light running photo enforcement at urban signalized intersections[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(5): 309-324.
|
[24] |
LIU Qing-hua, CHUNG E, ZHAI Liu-jia. Fusing moving average model and stationary wavelet decomposition for automatic incident detection: case study of Tokyo expressway[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(6): 404-414.
|