LIU Guo-wei, XIA Qian, WANG Qian-ye, DONG Ru-ling. Inertia effects of cutting energy absorption[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 62-70. doi: 10.19818/j.cnki.1671-1637.2015.03.008
Citation: LIU Guo-wei, XIA Qian, WANG Qian-ye, DONG Ru-ling. Inertia effects of cutting energy absorption[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 62-70. doi: 10.19818/j.cnki.1671-1637.2015.03.008

Inertia effects of cutting energy absorption

doi: 10.19818/j.cnki.1671-1637.2015.03.008
More Information
  • Author Bio:

    LIU Guo-wei(1955-), male, professor, + 86-731-82656673, liuguoweimail@163.com

  • Received Date: 2014-12-23
  • Publish Date: 2015-06-25
  • Based on considering the influence of cutting heat, the inertia effects of cutting energy absorption were studied by numerical simulation, and stable cutting force, cutting displacement, maximum temperature, heat dissipative energy and the dissipative proportion of thermal energy were computed under different initial impact conditions.Computation result shows when the initial impact energy is 20 kJ and there are no distinct initial cutting force peaks in chip formation, the stable cutting force ranges from 63.0 kN to 63.8 kN, and the changing rules and trends of cutting force curves are approximately same.When the impact mass is 200 kg and the impact velocity changes from 3 m·s-1 to 10 m·s-1, the stable cutting force ranges from 63.0 kN to 64.4 k N.When the impact velocity is 10 m·s-1 and the impact mass changes from 0.4 t to 3.2 t, the heat dissipative energy increases from 4.12 kJ to 36.64 kJ, the maximum temperature changes between 586 ℃ and 602 ℃, the dissipative proportion of thermal energy ranges from 20.6% to 23.2%, and the stable force ranges from 63.0 kN to 64.1 kN. Obviously, when the cutting depth and the geometrical parameters of cutting tool are defined, the initial impact energy, impact mass and impact velocity have little effect on the cutting force, the inertia effects of cutting energy-absorbing process are insensitive, and the cutting energy-absorbing structure belongs to type Ⅰ.The cutting heat accounts for a large proportion of energy dissipation and is greatly influenced by the initial impact velocity.

     

  • loading
  • [1]
    王庆艳. 铝型材地铁车车体耐撞性分析及吸能结构最优设计[D]. 大连: 大连交通大学, 2007.

    WANG Qing-yan. The crashworthiness and optimization of the aluminum subway vehicles[D]. Dalian: Dalian Jiaotong University, 2007. (in Chinese).
    [2]
    WIERZBICKI T. Crushing analysis of metal honeycombs[J]. International Journal of Impact Engineering, 1983, 1(2): 157-174. doi: 10.1016/0734-743X(83)90004-0
    [3]
    伞军民. 列车吸能结构碰撞仿真与分析[D]. 大连: 大连交通大学, 2009.

    SAN Jun-min. The crash simulation and analysis of the train's energy-absorbing structure[D]. Dalian: Dalian Jiaotong University, 2009. (in Chinese).
    [4]
    罗玗琪. B型地铁车辆间鼓胀与诱导组合式吸能结构碰撞性能研究[D]. 长沙: 中南大学, 2011.

    LUO Yu-qi. Research on crashworthiness of both bulgy type and guide combined type energy-absorbing structures between B-type subway vehicles[D]. Changsha: Central South University, 2011. (in Chinese).
    [5]
    CALLADINE C R, ENGLISH R W. Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure[J]. International Journal of Mechanical Sciences, 1984, 26(11/12): 689-701.
    [6]
    卢文浩, 鲍荣浩. 动态冲击下能量吸收结构的惯性敏感性的数值模拟分析[J]. 振动与冲击, 2004, 23(3): 67-69. doi: 10.3969/j.issn.1000-3835.2004.03.018

    LU Wen-hao, BAO Rong-hao. Numerical simulation study on the inertia-sensitiveness of energy-absorbing structures under impact loading[J]. Journal of Vibration and Shock, 2004, 23(3): 67-69. (in Chinese). doi: 10.3969/j.issn.1000-3835.2004.03.018
    [7]
    EJI U, KATSUHIRO M, TAKAHIRO S. Simulation analysis of built-up edge formation in machining of low carbon steel[J]. Bulletin of the Japan Society Precision Engineering, 1981, 15(4): 237-242.
    [8]
    STRENKOWASKI J S, CARROLL J T. A finite element model of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1985, 107(4): 349-354. doi: 10.1115/1.3186008
    [9]
    STRENKOWASKI J S, MOON K J. Finite element prediction of chip geometry and tool/workpiece temperature distribution in orthogonal metal cutting[J]. Journal of Manufacturing Science and Engineering, 1990, 112(3): 313-318.
    [10]
    SHIH A J. Finite element simulation of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1995, 117(2): 84-93.
    [11]
    HUANG J M, BLACK J T. An evaluation of chip separation criteria for the FEM simulation of machining[J]. Journal of Manufacturing Science and Engineering, 1996, 118(4): 545-554. doi: 10.1115/1.2831066
    [12]
    SMITH A J R, ARMAREGO E J A. Temperature prediction in orthogonal cutting with a finite difference approach[J]. CIRP Annals-Manufacturing Technology, 1981, 30(1): 9-13. doi: 10.1016/S0007-8506(07)60886-5
    [13]
    CHILDS T H C. Ductile shear failure damage modelling and predicting built-up edge in steel machining[J]. Journal of Materials Processing Technology, 2013, 213(11): 1954-1969. doi: 10.1016/j.jmatprotec.2013.05.017
    [14]
    CHILDS T H C. Developments in simulating built up edge formation in steel machining[C]∥WRHRNER K. Fifth CIRP Conference on High Performance Cutting. Amsterdam: Elsevier, 2012: 78-83.
    [15]
    CHILDS T H C. Towards simulating built-up-edge formation in the machining of steel[J]. CIRP Journal of Manufacturing Science and Technology, 2011, 4(1): 57-70. doi: 10.1016/j.cirpj.2011.07.002
    [16]
    HAJMOHAMMADI M S, MOVAHHEDY M R, MORADI H. Investigation of thermal effects on machining chatter based on FEM simulation of chip formation[J]. CIRP Journal of Manufacturing Science and Technology, 2014, 7(1): 1-10. doi: 10.1016/j.cirpj.2013.11.001
    [17]
    常宁. 切削式吸能过程仿真研究[D]. 长沙: 中南大学, 2009.

    CHANG Ning. Simulation for energy-absorbing process in metal-cutting way[D]. Changsha: Central South University, 2009. (in Chinese).
    [18]
    汤礼鹏. 城轨车辆切削式专用吸能装置研究[D]. 长沙: 中南大学, 2010.

    TANG Li-peng. Research on the special energy-absorbing structure of mass transit vehicle[D]. Changsha: Central South University, 2010. (in Chinese).
    [19]
    雷成, 肖守讷, 罗世辉. 轨道车辆切削式吸能装置吸能特性研究[J]. 中国机械工程, 2013, 24(2): 263-267. doi: 10.3969/j.issn.1004-132X.2013.02.022

    LEI Cheng, XIAO Shou-ne, LUO Shi-hui. Research on energy absorption characteristics of rail vehicle energy-absorbing component in cutting way[J]. China Mechanical Engineering, 2013, 24(2): 263-267. (in Chinese). doi: 10.3969/j.issn.1004-132X.2013.02.022
    [20]
    雷成, 肖守讷, 罗世辉. 基于显式有限元的高速列车吸能装置吸能原理研究[J]. 铁道机车车辆, 2012, 32(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201202000.htm

    LEI Cheng, XIAO Shou-ne, LUO Shi-hui. Research on the energy-absorbing theory of high speed train energy-absorbing component based on the explicit finite element[J]. Railway Locomotive and Car, 2012, 32(2): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201202000.htm
    [21]
    雷成, 肖守讷, 罗世辉. 轨道车辆新型车端专用吸能装置[J]. 西南交通大学学报, 2013, 48(4): 738-744. doi: 10.3969/j.issn.0258-2724.2013.04.022

    LEI Cheng, XIAO Shou-ne, LUO Shi-hui. New special energyabsorbing component at vehicle end of rail vehicles[J]. Journal of Southwest Jiaotong University, 2013, 48(4): 738-744. (in Chinese). doi: 10.3969/j.issn.0258-2724.2013.04.022
    [22]
    岳伟玲, 王喜顺, 罗昌杰, 等. 圆孔拉刀式吸能器吸能特性的研究[J]. 机械设计与制造, 2014(7): 27-30. doi: 10.3969/j.issn.1001-3997.2014.07.008

    YUE Wei-ling, WANG Xi-shun, LUO Chang-jie, et al. Round broaching energy absorption characteristics of energyabsorbing device[J]. Machinery Design and Manufacture, 2014(7): 27-30. (in Chinese). doi: 10.3969/j.issn.1001-3997.2014.07.008
    [23]
    SINGACE A A, ELSOBKY H, REDDY T Y. On the eccentricity factor in the progressive crushing of tubes[J]. Interational Journal of Solids and Structures, 1995, 32(24): 3589-3602. doi: 10.1016/0020-7683(95)00020-B
    [24]
    SCHOKKER A, SRIDHARAN S, KASAGI A. Dynamic buckling of composite shells[J]. Computers and Structures, 1996, 59(1): 43-53. doi: 10.1016/0045-7949(95)00244-8
    [25]
    SCHAUER D A, HOOVER C G, KAY G J, et al. Crashworthiness simulations with DYNA3D[J]. Transportation Research Record, 1996(1528): 124-129.
    [26]
    RAMESH M V, SEETHARAMU K N, GANESAN N, et al. Finite element modelling of heat transfer analysis in machining of isotropic materials[J]. International Journal of Heat and Mass Transfer, 1999, 42(9): 1569-1583. doi: 10.1016/S0017-9310(98)00259-2
    [27]
    牟金磊, 朱锡, 黄晓明, 等. 水下爆炸气泡载荷在加筋板塑性变形中的作用[J]. 振动与冲击, 2010, 29(5): 74-77, 241. doi: 10.3969/j.issn.1000-3835.2010.05.016

    MOU Jin-lei, ZHU Xi, HUANG Xiao-ming, et al. Effect of underwater explosion bubble on plastic displacement of stiffened plates[J]. Journal of Vibration and Shock, 2010, 29(5): 74-77, 241. (in Chinese). doi: 10.3969/j.issn.1000-3835.2010.05.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (877) PDF downloads(1046) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return