LI Yong-le, XU Xin-yu, YAN Nai-jie, DENG Jiang-tao, XIANG Huo-yue. Comparison of wind-vehicle-bridge coupling vibration characteristics for three-line three-tower suspension bridge[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 17-25. doi: 10.19818/j.cnki.1671-1637.2015.06.003
Citation: LI Yong-le, XU Xin-yu, YAN Nai-jie, DENG Jiang-tao, XIANG Huo-yue. Comparison of wind-vehicle-bridge coupling vibration characteristics for three-line three-tower suspension bridge[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 17-25. doi: 10.19818/j.cnki.1671-1637.2015.06.003

Comparison of wind-vehicle-bridge coupling vibration characteristics for three-line three-tower suspension bridge

doi: 10.19818/j.cnki.1671-1637.2015.06.003
More Information
  • Author Bio:

    LI Yong-le(1972-),male,professor,PhD,+86-28-87601119,lele@swjtu.edu.cn

  • Received Date: 2015-07-08
  • Publish Date: 2015-06-25
  • Taking the two design schemes(steel-box-truss and steel-truss schemes)of a three-line three-tower suspension bridge as the research object, the three-component coefficients of forces for vehicle and bridge were obtained by the wind tunnel tests of vehicle-bridge system section model.Based on the spatial dynamics model of wind-vehicle-bridge(WVB)system, the dynamic characteristics of bridge and the coupling vibration characteristics of WVB system were analyzed by using the self-developed software BANSYS. Analysis result indicates that the natural frequencies of three-line three-tower suspension bridge are comparatively low.The aerodynamic characteristics of vehicle were greatly affected by track position, and the drag coefficient of windward vehicle for the steel-truss scheme is about 2.2 times that for the steel-box-truss scheme.When wind speed is 0, the dynamic responses of bridge and vehicle increase with the increase of vehicle speed.The displacements of bridge for the steel-truss scheme are bigger than those for the steel-box-truss scheme at the same vehicle speed, which is resulted from the weaker whole stiffness for the steel-truss scheme.When wind speed is considered, the lateral responsesof bridge greatly increase with wind speed increasing.When vehicle is running on the windward side and wind speed increases from 15m·s-1 to 25m·s-1, the lateral displacements of bridge for the steel-box-truss and steel-truss schemes enlarge to approximate 2.4 times and 3.8 times respectively, and crosswind is dominant to the lateral responses of bridge.On the whole, the bridge responses for the steel-truss scheme are larger than those for the steel-box-truss scheme under the same wind speed.As for the same scheme, vehicle responses increase with wind speed increasing.When wind speed reaches 25 m·s-1, the dynamic responses remarkably increase, and the maximum response index increases by 71.6% compared with that at the wind speed of 15m·s-1.

     

  • loading
  • [1]
    YOSHIDA O, OKUDA M, MORIYA T. Structural characteristics and applicability of four-span suspension bridge[J]. Journal of Bridge Engineering, 2004, 9(5): 453-463. doi: 10.1061/(ASCE)1084-0702(2004)9:5(453)
    [2]
    肖汝诚, 姜洋, 项海帆. 缆索承重桥的体系比选[J]. 同济大学学报: 自然科学版, 2013, 41(2): 179-185, 207. doi: 10.3969/j.issn.0253-374x.2013.02.004

    XIAO Ru-cheng, JIANG Yang, XIANG Hai-fan. Comparison between structural systems of cable supported bridges[J]. Journal of Tongji University: Natural Science, 2013, 41(2): 179-185, 207. (in Chinese). doi: 10.3969/j.issn.0253-374x.2013.02.004
    [3]
    NAZIR C P. Multispan balanced suspension bridge[J]. Journal of Structural Engineering, 1986, 112(11): 2512-2527. doi: 10.1061/(ASCE)0733-9445(1986)112:11(2512)
    [4]
    WANG Hao, TAO Tian-you, ZHOU Rui, et al. Parameter sensitivity study on flutter stability of a long-span tripletower suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 128: 12-21. doi: 10.1016/j.jweia.2014.03.004
    [5]
    万田保, 王忠彬. 泰州长江公路大桥三塔两跨悬索桥总体稳定性分析[J]. 桥梁建设, 2008(2): 17-19, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200802006.htm

    WAN Tian-bao, WANG Zhong-bin. Analysis of global stability of three-tower and two-span suspension bridge of Taizhou Changjiang River Highway Bridge[J]. Bridge Construction, 2008(2): 17-19, 26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200802006.htm
    [6]
    张文明, 葛耀君. 三塔双主跨悬索桥动力特性精细化分析[J]. 中国公路学报, 2014, 27(2): 70-76. doi: 10.3969/j.issn.1001-7372.2014.02.009

    ZHANG Wen-ming, GE Yao-jun. Refinement analysis of dynamic characteristics of suspension bridge with triple towers and double main spans[J]. China Journal of Highway and Transport, 2014, 27(2): 70-76. (in Chinese). doi: 10.3969/j.issn.1001-7372.2014.02.009
    [7]
    梁鹏, 吴向男, 李万恒, 等. 三塔悬索桥静动力特性与中塔选型[J]. 交通运输工程学报, 2011, 11(4): 29-35. http://transport.chd.edu.cn/article/id/201104005

    LIANG Peng, WU Xiang-nan, LI Wan-heng, et al. Static and dynamic properties of three-tower suspension bridge and structural type selection of mid-tower[J]. Journal of Traffic and Transportation Engineering, 2011, 11(4): 29-35. (in Chinese). http://transport.chd.edu.cn/article/id/201104005
    [8]
    李加武, 王新, 张悦, 等. 桥梁风致振动的混沌特性[J]. 交通运输工程学报, 2014, 14(3): 34-42. doi: 10.3969/j.issn.1671-1637.2014.03.009

    LI Jia-wu, WANG Xin, ZHANG Yue, et al. Chaos characteristics of wind-induced vibrations for bridge[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 34-42. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.03.009
    [9]
    LIU M F, CHANG T P, ZENG D Y. The interactive vibration behavior in a suspension bridge system under moving vehicle loads and vertical seismic excitations[J]. Applied Mathematical Modelling, 2011, 35(1): 398-411. doi: 10.1016/j.apm.2010.07.005
    [10]
    XU Y L, XIA H, YAN Q S. Dynamic response of suspension bridge to high wind and running train[J]. Journal of Bridge Engineering, 2003, 8(1): 46-55. doi: 10.1061/(ASCE)1084-0702(2003)8:1(46)
    [11]
    CHEN Z W, XU Y L, LI Q, et al. Dynamic stress analysis of long suspension bridges under wind, railway, and highway loadings[J]. Journal of Bridge Engineering, 2011, 16(3): 383-391. doi: 10.1061/(ASCE)BE.1943-5592.0000216
    [12]
    DIANA G, FIAMMENGHI G. The Messina Strait Bridge: major problems affecting the design[C]∥STEFFEN A. 34th International Symposium on Bridge and Structural Engineering: Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas. Zurich: International Association for Bridge and Structural Engineering, 2010: 1-24.
    [13]
    ANDERSEN P K, ANDERSEN J E, BORDONARA G, et al. Runability analysis for the planned Messina Strait Bridge[C]∥ROECK G D, DEGRANDE G, LOMBAERT G, et al. Proceedings of the 8th International Conference on Structural Dynamics. München: European Association of Structural Dynamics, 2011: 1503-1509.
    [14]
    KWON S D, LEE J S, MOON J W, et al. Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge subjected to gusty wind[J]. Engineering Structures, 2008, 30(12): 3445-3456. doi: 10.1016/j.engstruct.2008.05.003
    [15]
    刘清江. 公轨两用悬索桥风-车-桥耦合振动研究[J]. 武汉理工大学学报, 2014, 36(3): 107-113.

    LIU Qing-jiang. Coupled vibration research of wind-vehiclebridge of light rail-cum-road suspension bridges[J]. Journal of Wuhan University of Technology, 2014, 36(3): 107-113. (in Chinese).
    [16]
    李永乐, 董世赋, 臧瑜, 等. 大跨度公轨两用悬索桥风-车-桥耦合振动及抗风行车准则研究[J]. 工程力学, 2012, 29(12): 114-120.

    LI Yong-le, DONG Shi-fu, ZANG Yu, et al. Coupling vibration of wind-vehicle-bridge system for long-span road-rail suspension bridge and resistant-wind criterion of running train[J]. Engineering Mechanics, 2012, 29(12): 114-120. (in Chinese).
    [17]
    LI Yong-le, XIANG Huo-yue, WANG Bin, et al. Dynamic analysis of wind-vehicle-bridge coupling system during the meeting of two trains[J]. Advances in Structural Engineering, 2013, 16(10): 1663-1670. doi: 10.1260/1369-4332.16.10.1663
    [18]
    张敏, 张楠, 夏禾. 大跨度铁路悬索桥风-车-桥耦合动力分析[J]. 中国铁道科学, 2013, 34(4): 14-21.

    ZHANG Min, ZHANG Nan, XIA He. Analysis on windvehicle-bridge dynamic interaction for long-span railway suspension bridge[J]. China Railway Science, 2013, 34(4): 14-21. (in Chinese).
    [19]
    LI Yong-le, QIANG Shi-zhong, LIAO Hai-li, et al. Dynamics of wind-rail vehicle-bridge systems[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(6): 483-507. doi: 10.1016/j.jweia.2005.04.001
    [20]
    孟莎, 高芒芒. 武汉天兴洲公铁两用长江大桥动力计算分析[J]. 桥梁建设, 2008(1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200801000.htm

    MENG Sha, GAO Mang-mang. Analysis of dynamic force calculation of Wuhan Tianxingzhou Changjiang Rail-Cum-Road Bridge[J]. Bridge Construction, 2008(1): 1-3. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200801000.htm
    [21]
    李永乐, 朱佳琪, 赵凯, 等. 上海长江大桥风-轨道车辆-桥耦合振动及抗风行车准则研究[J]. 土木工程学报, 2012, 45(9): 108-114.

    LI Yong-le, ZHU Jia-qi, ZHAO Kai, et al. Coupled vibration of wind-rail vehicle-bridge system for Shanghai Yangtze River Bridge and the wind-resistant criterion of running trains[J]. China Civil Engineering Journal, 2012, 45(9): 108-114. (in Chinese).
    [22]
    李永乐, 廖海黎, 强士中. 车桥系统气动特性的节段模型风洞试验研究[J]. 铁道学报, 2004, 26(3): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200403014.htm

    LI Yong-le, LIAO Hai-li, QIANG Shi-zhong. Study on aerodynamic characteristics of the vehicle-bridge system by the section model wind tunnel test[J]. Journal of the China Railway Society, 2004, 26(3): 71-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200403014.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (600) PDF downloads(594) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return