XIE Tian-hua, LIN Yan, YANG Zu-yao, JIN Liang-an. Bayesian network model for intelligent recognition of typical compartment fire[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 90-99. doi: 10.19818/j.cnki.1671-1637.2016.02.011
Citation: XIE Tian-hua, LIN Yan, YANG Zu-yao, JIN Liang-an. Bayesian network model for intelligent recognition of typical compartment fire[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 90-99. doi: 10.19818/j.cnki.1671-1637.2016.02.011

Bayesian network model for intelligent recognition of typical compartment fire

doi: 10.19818/j.cnki.1671-1637.2016.02.011
More Information
  • Author Bio:

    XIE Tian-hua(1976-), male, associate professor, doctoral student, +86-411-85856210, tianhua_xie@sina.com

    LIN Yan(1963-), male, professor, PhD, +86-411-84707485, linyanly@dlut.edu.cn

  • Received Date: 2015-12-17
  • Publish Date: 2016-04-25
  • Based on advanced fire sensors, the Bayesian network model of recognizing fire size and category intelligently was established, six fire characteristic parameters including upper temperature, lower temperature, CO concentration, CO2 concentration, O2concentration and light obscuration were considered as the input variables of the model, fire size and category were considered as the output variables of the model, and the relationship between input and output variables was deduced.Four kinds of fire sources including mattress fire, cable fire, pool fire and spill fire were simulated in living room, combat center, engine room and hangar respectively, 2 880 groups of simulated sample data were generated by using CFAST software, the parameters of the model were trained, and the trained recognition model was validated by using full-scale fireexperimental data.Validation result indicates that when the data of fire sensors are intact, the average recognition accuracy rates are 88.0%, 95.0% and 85.7% for small, medium and large fires respectively, and the average recognition accuracy rates are 90.2% and 81.5% for solid and oil fires respectively.When one sensor can't work because of serious damage or the hit of antiship weapon, the average recognition accuracy rates are 82.4% and 82.7% for fire's size and category, only 8.1% and 2.8% less than the rates with integrated fire sensors data respectively.So, the proposed model has good recognition ability and robustness, and can be integrated into ship damage control supervisory system(DCSS)to assist commanders in timely selecting the most effective firefighting methods and tactics.

     

  • loading
  • [1]
    LEBLANC D. Fire environments typical of navy ships[D]. London: Worcester Polytechnic Institute, 1998.
    [2]
    CALABRESE F, CORALLO A, MARGHERITA A, et al. A knowledge-based decision support system for shipboard damage control[J]. Expert Systems with Applications, 2012, 39(9): 8204-8211. doi: 10.1016/j.eswa.2012.01.146
    [3]
    OWRUTSKY J C, STEINHURST D A, MINOR C P, et al. Long wavelength video detection of fire in ship compartments[J]. Fire Safety Journal, 2006, 41(4): 315-320. doi: 10.1016/j.firesaf.2005.11.011
    [4]
    GOTTUK D T, LYNCH J A, ROSE-PEHRSSON S L, et al. Video image fire detection for shipboard use[J]. Fire Safety Journal, 2006, 41(4): 321-326. doi: 10.1016/j.firesaf.2005.12.007
    [5]
    ROSE-PEHRSSON S L, SHAFFER R E, HART S J, et al. Multi-criteria fire detection systems using a probabilistic neural network[J]. Sensors and Actuators B: Chemical, 2000, 69(3): 325-335. doi: 10.1016/S0925-4005(00)00481-0
    [6]
    KUO H C, CHANG H K. A real-time shipboard fire-detection system based on grey-fuzzy algorithms[J]. Fire Safety Journal, 2003, 38(4): 341-363. doi: 10.1016/S0379-7112(02)00088-7
    [7]
    ROSE-PEHRSSON S L, HART S J, STREET T T, et al. Early warning fire detection system using a probabilistic neural network[J]. Fire Technology, 2003, 39(2): 147-171. doi: 10.1023/A:1024260130050
    [8]
    WANG S J, JENG D L, TSAI M T. Early fire detection method in video for vessels[J]. Journal of Systems and Software, 2009, 82(4): 656-667. doi: 10.1016/j.jss.2008.09.025
    [9]
    WILKINS D C, SNIEZEK J A, TETEM PA, et al. The DC-SCS supervisory control system for ship damage control: volume 1—design overview[R]. Washington DC: Naval Research Laboratory, 2001.
    [10]
    ROSE-PEHRSSON S L, MINOR C P, STEINHURST D A, et al. Volume sensor for damage assessment and situational awareness[J]. Fire Safety Journal, 2006, 41(4): 301-310. doi: 10.1016/j.firesaf.2005.12.005
    [11]
    MINOR C P, JOHNSON K J, ROSE-PEHRSSON S L. A full-scale prototype multisensor system for fire detection and situational awareness[C]//SPIE. Proceedings of SPIE 6571, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications. Bellingham: SPIE, 2007: 11-12.
    [12]
    李卡麟. 基于二叉树的LS-WSVM模型在早期火灾分类上的研究[D]. 汕头: 汕头大学, 2010.

    LI Ka-lin. Research on LS-WSVM based on binary tree in early fire multi-class classification[D]. Shantou: Shantou University, 2010. (in Chinese)
    [13]
    庄哲民, 李卡麟, 张新蜂, 等. 用于早期火灾分类的非线性决策树支持向量机[J]. 火灾科学, 2009, 18(4): 206-211. doi: 10.3969/j.issn.1004-5309.2009.04.004

    ZHUANG Zhe-min, LI Ka-lin, ZHANG Xin-feng, et al. Nonlinear decision tree support vector machine for early fire classification[J]. Fire Safety Science, 2009, 18(4): 206-211. (in Chinese) doi: 10.3969/j.issn.1004-5309.2009.04.004
    [14]
    孙福志, 于军琪, 杨柳. 火灾识别中RS-SVM模型的应用[J]. 计算机工程与应用, 2010, 46(3): 198-200. doi: 10.3778/j.issn.1002-8331.2010.03.061

    SUN Fu-zhi, YU Jun-qi, YANG Liu. Application of RS-SVM model for fire identification[J]. Computer Engineering and Application, 2010, 46(3): 198-200. (in Chinese) doi: 10.3778/j.issn.1002-8331.2010.03.061
    [15]
    赵亚琴. 基于模糊神经网络的火灾识别算法[J]. 计算机仿真, 2015, 32(2): 369-373. doi: 10.3969/j.issn.1006-9348.2015.02.080

    ZHAO Ya-qin. Forest fire recognition algorithm based on fuzzy neural network[J]. Computer Simulation, 2015, 32(2): 369-373. (in Chinese) doi: 10.3969/j.issn.1006-9348.2015.02.080
    [16]
    KIM J H, LATTIMER B Y. Real-time probabilistic classification of fire and smoke using thermalimagery for intelligent firefighting robot[J]. Fire Safety Journal, 2015, 72: 40-49. doi: 10.1016/j.firesaf.2015.02.007
    [17]
    AKHTAR M J, UTNE I B. Human fatigue's effect on the risk of maritime groundings—a Bayesian network modeling approach[J]. Safety Science, 2014, 62: 427-440. doi: 10.1016/j.ssci.2013.10.002
    [18]
    GROIS E, WILKINS D C, EARMAN I, et al. The DC-SCS supervisory control system for ship damage control: volume4—intelligent reasoning[R]. Washington DC: Naval Research Laboratory, 2001.
    [19]
    BAKSH A A, KHAN F, GADAG V, et al. Network based approach for predictive accident modelling[J]. Safety Science, 2015, 80: 274-287. doi: 10.1016/j.ssci.2015.08.003
    [20]
    刘志军, 纪卓尚, 林焰. 基于贝叶斯网络的船舶机舱火灾风险分析研究[J]. 中国造船, 2010, 51(3): 199-205. doi: 10.3969/j.issn.1000-4882.2010.03.024

    LIU Zhi-jun, JI Zhuo-shang, LIN Yan. Fire risk analysis in ship engine room based on Bayesian networks[J]. Shipbuilding of China, 2010, 51(3): 199-205. (in Chinese) doi: 10.3969/j.issn.1000-4882.2010.03.024
    [21]
    WILLIAMS F W, SCHEFFEY J L, HILL S A, et al. Postflashover fires in shipboard compartments aboard ex-USS Shadwell: phase V—fire dynamics[R]. Washington DC: Naval Research Laboratory, 1999.
    [22]
    WILLIAMS F W, TATEM P A, XUAN N, et al. Results of1998DC-ARM/ISFE demonstration tests[R]. Washington DC: Naval Research Laboratory, 2000.
    [23]
    HOOVER J B, WHITEHURST C L, CHANG E B, et al. Final report on fire performance of shipboard electronic space materials[R]. Washington DC: Naval Research Laboratory, 2006.
    [24]
    HOOVER J B, BAILEY J L, WILLAUER H D, et al. Evaluation of submarine hydraulic system explosion and fire hazards[R]. Washington DC: Naval Research Laboratory, 2005.
    [25]
    WONG J T, GOTTUK D T, ROSE-PETHRSSON S L, et al. Results of multi-criteria fire detection system tests[R]. Washington DC: Naval Research Laboratory, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (423) PDF downloads(940) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return