ZHOU Zheng-feng, PU Zhuo-heng, LIU Chao. Application of cohesive zone model to simulate reflective crack of asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.03.001
Citation: ZHOU Zheng-feng, PU Zhuo-heng, LIU Chao. Application of cohesive zone model to simulate reflective crack of asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.03.001

Application of cohesive zone model to simulate reflective crack of asphalt pavement

doi: 10.19818/j.cnki.1671-1637.2018.03.001
More Information
  • Author Bio:

    ZHOU Zheng-feng(1981-), male, associate professor, PhD, zhouzf126@126.com

  • Received Date: 2018-02-03
  • Publish Date: 2018-06-25
  • Based on ABAQUS, the constitutive model and parameters of 3 Dcohesive element were analyzed by using the traction-separation law. By applying the displacement load on a cohesive element, the results of numerical simulation and theoretical computation of the stresses, displacements and strain energies were compared to verify the reliability of cohesive element under various combination rules of initial damage and complete failure in the loading process. In the asphalt surface course on the cracked base course, the cohesive elements were laid at the positions where reflective cracks might occur, the cohesive zone model was employed to simulatethe cracking procedure, and the effects of the parameters of cohesive element and the thickness of asphalt surface course on the crack propagation were studied. Analysis result shows that when the cohesive layer stiffness decreases from 40 to 20 GN · m-3, the ratio of separation displacements of cohesive layer under unilateral and symmetric loads increases from 1.52 to 13.52, and the ratio of shear displacement to normal displacement of cohesive layer increases from 1.52 to 11.32 under unilateral load, which indicates that the asphalt surface course tends to appear type-Ⅱ shear cracks as the stiffness of potential cracking area decreases. Under traffic load, the cracking path of asphalt pavement is as follows: first, the damage begins at the bottom of asphalt surface course and propagates upwards; next, other damages occur near the loading area and propagate downwards; finally, after penetrating the entire surface course, the continuous decrease of potential fracture zone's stiffness will cause crack to propagate along the transverse direction of the pavement. In the increasing process of surface course thickness from 16 to 22 cm with a 2 cm-gradient, the separation displacement of cohesive layer decreases by 32.31%, 15.22% and 9.63%, respectively, and the ratio of shear displacement to normal displacement decreases from 3.24 to 1.10, which indicates that the increase of surface course thickness can effectively mitigate the propagation of reflective crack, although the effect decreases as the thickness increases. Furthermore, the increase of surface course thickness makes the reflective crack gradually transfer from type-Ⅱshear crack to type-Ⅰ-Ⅱmixed crack.

     

  • loading
  • [1]
    陈贵锋. 高等级公路沥青路面反射裂缝的分析与防治[J]. 重庆交通学院学报, 2003, 22 (3): 33-36. doi: 10.3969/j.issn.1674-0696.2003.03.009

    CHEN Gui-feng. The analysis and prevention of reflective cracking in asphalt pavement of expressway[J]. Journal of Chongqing Jiaotong University, 2003, 22 (3): 33-36. (in Chinese). doi: 10.3969/j.issn.1674-0696.2003.03.009
    [2]
    李自林, 龚能飞, 栾小兵. 半刚性基层沥青路面温缩型反射裂缝的扩展机理分析[J]. 公路交通科技, 2008, 25 (1): 43-46, 63. doi: 10.3969/j.issn.1002-0268.2008.01.008

    LI Zi-lin, GONG Neng-fei, LUAN Xiao-bing. Development mechanism analysis of temperature shrinkage type reflective crack in asphalt pavement on semi-rigid base[J]. Journal of Highway and Transportation Research and Development, 2008, 25 (1): 43-46, 63. (in Chinese). doi: 10.3969/j.issn.1002-0268.2008.01.008
    [3]
    王金昌, 朱向荣. 面层与基层层间摩擦系数对应力强度因子影响的研究[J]. 岩石力学与工程学报, 2005, 24 (15): 2757-2764. doi: 10.3321/j.issn:1000-6915.2005.15.027

    WANG Jin-chang, ZHU Xiang-rong. Study on stress intensity factor affected by friction coefficient between surface layer and subbase[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (15): 2757-2764. (in Chinese). doi: 10.3321/j.issn:1000-6915.2005.15.027
    [4]
    黄志义, 王金昌, 朱向荣. 含裂缝沥青混凝土路面的粘弹性断裂分析[J]. 中国公路学报, 2006, 19 (2): 18-23. doi: 10.3321/j.issn:1001-7372.2006.02.004

    HUANG Zhi-yi, WANG Jin-chang, ZHU Xiang-rong. Viscoelastic fracture analysis of asphalt concrete pavement with cracks[J]. China Journal of Highway and Transport, 2006, 19 (2): 18-23. (in Chinese). doi: 10.3321/j.issn:1001-7372.2006.02.004
    [5]
    ELSEIFI M, AL-QADI I L. A simplified overlay design model against reflective cracking utilizing service life prediction[J]. Road Materials and Pavement Design, 2004, 5 (2): 169-191. doi: 10.1080/14680629.2004.9689968
    [6]
    金光来. 基于扩展有限元的沥青路面疲劳开裂行为的数值研究[D]. 南京: 东南大学, 2015.

    JIN Guang-lai. Numerical analysis of fatigue crack growth in asphalt pavement based on extended finite element model[D]. Nanjing: Southeast University, 2015. (in Chinese).
    [7]
    LING Jian-ming, TAO Ze-feng, QIAN Jin-song, et al. Investigation the influences of geotextile on reducing the thermal reflective cracking using XFEM[J]. International Journal of Pavement Engineering, 2018, 19 (5): 391-398. doi: 10.1080/10298436.2017.1402598
    [8]
    ISLAM M R, VALLEJO M J, TAREFDER R A. Crack propagation in hot mix asphalt overlay using extended finiteelement model[J]. Journal of Materials in Civil Engineering, 2017, 29 (5): 04016296-1-14. doi: 10.1061/(ASCE)MT.1943-5533.0001815
    [9]
    BARENBLATT G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axiallysymmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23 (3): 434-444.
    [10]
    BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7 (C): 55-129.
    [11]
    HILLERBORG A, MODER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6 (6): 773-781. doi: 10.1016/0008-8846(76)90007-7
    [12]
    XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42 (42): 1397-1434.
    [13]
    GEUBELLE P H, BAYLOR J S. Impact-induced delamination of composites: a 2D simulation[J]. Composites Part B: Engineering, 1998, 29 (5): 589-602. doi: 10.1016/S1359-8368(98)00013-4
    [14]
    SONG S H, PAULINO G H, BUTTLAR W G. Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model[J]. Journal of Engineering Mechanics, 2006, 132 (11): 1215-1223. doi: 10.1061/(ASCE)0733-9399(2006)132:11(1215)
    [15]
    SONG S H, PAULINO G H, BUTTLAR W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material[J]. Engineering Fracture Mechanics, 2006, 73 (18): 2829-2848. doi: 10.1016/j.engfracmech.2006.04.030
    [16]
    SOARES J B, DE FREITAS F A C, ALLEN D H. Considering material heterogeneity in crack modeling of asphaltic mixtures[J]. Transportation Research Record, 2003 (1832): 113-120.
    [17]
    MU F, VANDENBOSSCHE J. A superimposed cohesive zone model for investigating the fracture properties of concrete-asphalt interface debonding[J]. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40 (4): 496-511. doi: 10.1111/ffe.12509
    [18]
    钮凯健, 李昶. 基于内聚力模型的沥青路面低温缩裂数值模拟[J]. 公路交通科技, 2012, 29 (6): 11-15, 21. doi: 10.3969/j.issn.1002-0268.2012.06.003

    NIU Kai-jian, LI Chang. Numerical simulation of low-temperature shrinkage cracking of asphalt pavement based on cohesive zone model[J]. Journal of Highway and Transportation Research and Development, 2012, 29 (6): 11-15, 21. (in Chinese). doi: 10.3969/j.issn.1002-0268.2012.06.003
    [19]
    PARK K, PAULINO G H, ROESLER J R. A unified potential-based cohesive model of mixed-mode fracture[J]. Journal of the Mechanics and Physics of Solids, 2009, 57 (6): 891-908. doi: 10.1016/j.jmps.2008.10.003
    [20]
    KIM Y R. Cohesive zone model to predict fracture in bituminous materials and asphaltic pavements: state-of-the-art review[J]. International Journal of Pavement Engineering, 2011, 12 (4): 343-356. doi: 10.1080/10298436.2011.575138
    [21]
    张东. 基于内聚力模型的沥青路面断裂研究[D]. 南京: 东南大学, 2010.

    ZHANG Dong. Research on fracture of asphalt pavements based on cohesive zone model[D]. Nanjing: Southeast University, 2010. (in Chinese).
    [22]
    KIM H, WAGONER M P, BUTTLAR W G. Simulation of fracture behavior in asphalt concrete using a heterogeneous cohesive zone discrete element model[J]. Journal of Materials in Civil Engineering, 2008, 20 (8): 552-563. doi: 10.1061/(ASCE)0899-1561(2008)20:8(552)
    [23]
    KIM H, WAGONER M P, BUTTLAR W G. Numerical fracture analysis on the specimen size dependency of asphalt concrete using a cohesive softening model[J]. Construction and Building Materials, 2009, 23 (5): 2112-2120. doi: 10.1016/j.conbuildmat.2008.08.014
    [24]
    CAMANHO P P, DVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37 (16): 1415-1438. doi: 10.1177/0021998303034505
    [25]
    王宏畅. 半刚性基层沥青路面反射裂缝扩展及寿命研究[J]. 交通运输系统工程与信息, 2012, 12 (2): 174-180. doi: 10.3969/j.issn.1009-6744.2012.02.027

    WANG Hong-chang. Reflective crack propagation and fatigue life of semi-rigid base asphalt pavement[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12 (2): 174-180. (in Chinese). doi: 10.3969/j.issn.1009-6744.2012.02.027
    [26]
    朱洪洲, 严恒, 唐伯明. 沥青混合料疲劳-蠕变交互作用损伤模型[J]. 中国公路学报, 2011, 24 (4): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201104005.htm

    ZHU Hong-zhou, YAN Heng, TANG Bo-ming. Damage model of interaction between fatigue and creep for asphalt mixture[J]. China Journal of Highway and Transport, 2011, 24 (4): 15-20. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201104005.htm
    [27]
    黄允江, 汪婧, 刘平, 等. 半刚性基层沥青路面反射裂缝处治新方法探讨[J]. 公路交通技术, 2016, 32 (4): 43-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201604010.htm

    HUANG Yun-jiang, WANG Jing, LIU Ping, et al. Exploring new method to treat reflection crack on semi rigid base asphalt pavement[J]. Technology of Highway and Transport, 2016, 32 (4): 43-48. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201604010.htm
    [28]
    BAEK J, OZER H, WANG Hao, et al. Effects of interface conditions on reflective cracking development in hot-mix asphalt overlays[J]. Road Materials and Pavement Design, 2010, 11 (2): 307-334. doi: 10.1080/14680629.2010.9690278
    [29]
    KIM H, BUTTLAR W G. Finite element cohesive fracture modeling of airport pavements at low temperatures[J]. Cold Regions Science and Technology, 2009, 57 (2/3): 123-130.
    [30]
    顾强康, 冷培义. 水泥混凝土道面上沥青加铺层反射裂缝试验研究[J]. 中国公路学报, 1999, 12 (1): 21-27. doi: 10.3321/j.issn:1001-7372.1999.01.004

    GU Qiang-kang, LENG Pei-yi. Experimental research on reflection cracking of bituminous overlay on old concrete pavement[J]. China Journal of Highway and Transport, 1999, 12 (1): 21-27. (in Chinese). doi: 10.3321/j.issn:1001-7372.1999.01.004
    [31]
    周富杰, 孙立军. 复合路面沥青面层最佳厚度[J]. 同济大学学报, 2001, 29 (10): 1234-1239. doi: 10.3321/j.issn:0253-374X.2001.10.020

    ZHOU Fu-jie, SUN Li-jun. Optimal thickness of asphalt overlay on existing concrete pavement[J]. Journal of Tongji University, 2001, 29 (10): 1234-1239. (in Chinese). doi: 10.3321/j.issn:0253-374X.2001.10.020
    [32]
    WANG Si-qi, HUANG Xiao-ming, MA Tao, et al. Numerical analysis of reflective cracking and fatigue lives of semi-rigid pavement structure using ABAQUS and FE-SAFE[J]. Journal of Southeast University: English Edition, 2015, 31 (4): 541-546.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (951) PDF downloads(960) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return