LIU Chuang, FENG Zhong-ju, ZHANG Fu-qiang, WU Jing-wu, DONG Yun-xiu, YIN Hong-hua, YUAN Feng-bin, LI Xiao-xiong, WEN Jun-qiang. Dynamic response of rock-socketed pile foundation for extra-large bridge under earthquake action[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 53-62. doi: 10.19818/j.cnki.1671-1637.2018.04.006
Citation: LIU Chuang, FENG Zhong-ju, ZHANG Fu-qiang, WU Jing-wu, DONG Yun-xiu, YIN Hong-hua, YUAN Feng-bin, LI Xiao-xiong, WEN Jun-qiang. Dynamic response of rock-socketed pile foundation for extra-large bridge under earthquake action[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 53-62. doi: 10.19818/j.cnki.1671-1637.2018.04.006

Dynamic response of rock-socketed pile foundation for extra-large bridge under earthquake action

doi: 10.19818/j.cnki.1671-1637.2018.04.006
More Information
  • Author Bio:

    LIU Chuang(1964-), male, senior eng ineer, PhD, liuchuang5119@163.com

  • Received Date: 2018-04-04
  • Publish Date: 2018-08-25
  • Combined with the Puqian Bridge project and based on the interaction mechanism of artificial mass model and pile-soil inertia, the vibration response of free field under seismic actionwas simulated by the vibration table model test and the laminated shear model box. The response characteristics of acceleration, relative displacement and bending moment, as well as the damage of large diameter bridge rock-socketed piles under the ground vibration intensity of 0.15 g-0.60 g (gis gravity acceleration) were analyzed. Research result shows that the acceleration peak value of pile foundation increases from the pile bottom to the pile top. The acceleration amplification coefficient decreases with the increase of ground vibration intensity. When the ground vibration intensity is 0.55 g, the acceleration amplification coefficient of pile top tends to a stable value of1.34. The acceleration time-history response frequency of pile top is lower than that of pile bottom. The upper cover layer has obvious effect on seismic wave amplification and filtering effect. With the increase of the ground vibration intensity, the relative displacement peak value of pile top approximately increases linearly. Under the ground vibration intensity of 0.15 g-0.60 g, the peak value variation range of relative displacement of pile top is 1.97-6.73 mm. The bending moment of pile foundation changes in a"3"shape along the length of the pile, and it reaches the peak value at the upper boundary between soft and hard soil layer and near the bedrock surface. The peak value of bending moment increases with the ground vibration intensity. When the ground vibration intensity is 0.50 g, the peak value of bending moment reaches 190.9 kN·m. The bending moment exceeds the bending capacity of the pile. With the increase of ground vibration intensity, the fundamental frequency of pile foundation decreases as a whole. Under the ground vibration intensity of 0.50 g, the frequency of pile foundation decreases by 50.1%, compring with that under the action of 0.35 gground vibration intensity, and the pile foundation is damaged. Cracks easily occur at near the junction of pile top and cap, the soft-hard soil interface and bedrock surface under seismic action, and the seismic design of the bridge pile foundation should be considered.

     

  • loading
  • [1]
    王东升, 杨海红, 王国新. 考虑邻梁碰撞的多跨长简支梁桥落梁震害分析[J]. 中国公路学报, 2005, 18 (3): 54-59. doi: 10.3321/j.issn:1001-7372.2005.03.011

    WANG Dong-sheng, YANG Hai-hong, WANG Guo-xin. Seismic analysis of girders falling down in multi span long simply supported bridges with adjacent pounding effects[J]. China Journal of Highway and Transport, 2005, 18 (3): 54-59. (in Chinese). doi: 10.3321/j.issn:1001-7372.2005.03.011
    [2]
    黄勇, 王君杰, 韩鹏, 等. 考虑支座破坏的连续梁桥地震反应分析[J]. 土木工程学报, 2010, 43 (增2): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2010S2035.htm

    HUANG Yong, WANG Jun-jie, HAN Peng, et al. Seismic response analysis of continuous bridges taking account of bearing failure[J]. China Civil Engineering Journal, 2010, 43 (S2): 217-223. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2010S2035.htm
    [3]
    贡金鑫, 王雪婷, 张勤. 从汶川地震灾害看现行国内外桥梁抗震设计方法[J]. 大连理工大学学报, 2009, 49 (5): 739-747. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200905021.htm

    GONG Jin-xin, WANG Xue-ting, ZHANG Qin. Overview on current bridge seismic design approach in home and abroad codes based on survey of Wenchuan Earthquake[J]. Journal of Dalian University of Technology, 2009, 49 (5): 739-747. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200905021.htm
    [4]
    王青桥, 韦晓, 王君杰. 桥梁桩基震害特点及其破坏机理[J]. 震灾防御技术, 2009, 4 (2): 167-173. doi: 10.3969/j.issn.1673-5722.2009.02.005

    WANG Qing-qiao, WEI Xiao, WANG Jun-jie. Characteristics and mechanisms of earthquake damage of bridge pile foundation[J]. Technology for Earthquake Disaster Prevention, 2009, 4 (2): 167-173. (in Chinese). doi: 10.3969/j.issn.1673-5722.2009.02.005
    [5]
    刘惠珊. 桩基抗震设计探讨——日本阪神大地震的启示[J]. 工程抗震, 2000 (3): 27-32. doi: 10.3969/j.issn.1002-8412.2000.03.006

    LIU Hui-shan. Discussion on seismic design of pile foundation-enlightenment of the Hanshin Earthquake in Japan[J]. Earthquake Resistant Engineering and Retrofitting, 2000 (3): 27-32. (in Chinese). doi: 10.3969/j.issn.1002-8412.2000.03.006
    [6]
    LUO X, MURONO Y, TANAMURA S. Seismic performance assessment of existing pile group foundation[J]. Quarterly Report of RTRI, 2001, 42 (3): 136-142. doi: 10.2219/rtriqr.42.136
    [7]
    郭璇, 袁大军, 王梦恕, 等. 浅源断层大地震地区铁路桩基的破坏机理分析[J]. 铁道工程学报, 2008 (增1): 240-247.

    GUO Xuan, YUAN Da-jun, WANG Meng-shu, et al. Analysis of damage mechanism of railway pile foundation in shallow focus fault large earthquake area[J]. Journal of Railway Engineering Society, 2008 (S1): 240-247. (in Chinese).
    [8]
    吕建根, 邱剑辉. 水平地震作用下桩基的非线性动力响应分析[C]∥中国岩石力学与工程学会. 第3届全国工程安全与防护学术会议论文集. 北京: 中国岩石力学与工程学会, 2012: 406-410.

    LYU Jian-gen, QIU Jian-hui. The nonlinear dynamic response analysis of pile foundation under horizontal earthquake action[C]∥Chinese Society for Rock Mechanics and Engineering. Proceedings of the 3rd National Academic Conference on Engineering Safety and Protection. Beijing: Chinese Society for Rock Mechanics and Engineering, 2012: 406-410. (in Chinese).
    [9]
    马亢, 陈东霞, 牛富生, 等. 基于π定理推导的桩基最大地震附加弯矩计算公式[J]. 厦门大学学报: 自然科学版, 2014, 53 (4): 514-519. https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201404014.htm

    MA Kang, CHEN Dong-xia, NIU Fu-sheng, et al. A formula for estimating maximum additional seismic bending moment of pile foundation deduced by theπtheorem[J]. Journal of Xiamen University: Natural Science, 2014, 53 (4): 514-519. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDZK201404014.htm
    [10]
    陈海兵, 梁发云. 群桩基础水平动力响应简化边界元频域解答[J]. 岩土工程学报, 2014, 36 (6): 1057-1063. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406012.htm

    CHEN Hai-bing, LIANG Fa-yun. Simplified boundary element method for lateral vibration response of pile groups in frequency domain[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (6): 1057-1063. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406012.htm
    [11]
    LAORA R D, ROVITHIS E. Kinematic bending of fixed-head piles in nonhomogeneous soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141 (4): 04014126-1-10.
    [12]
    刘保东, 李鹏飞, 陈海波. 考虑连续梁桥布置方案的横向地震反应规律研究[J]. 中国铁道科学, 2009, 30 (6): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200906006.htm

    LIU Bao-dong, LI Peng-fei, CHEN Hai-bo. Seismic response analysis for continuous beam bridges in transverse direction considering the bridge layout scheme[J]. China Railway Science, 2009, 30 (6): 33-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200906006.htm
    [13]
    杨海波, 尹晓春. 考虑橡胶支座作用的桥梁多次竖向碰撞力的计算[J]. 振动与冲击, 2014, 33 (5): 187-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201405035.htm

    YANG Hai-bo, YIN Xiao-chun. Calculation of multiple vertical pounding forces on a bridge under vertical earthquake considering influence of rubber bearings[J]. Journal of Vibration and Shock, 2014, 33 (5): 187-192. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201405035.htm
    [14]
    韩强, 杜修力, 刘晶波, 等. 多维地震作用下隔震桥梁地震反应(Ⅰ) ——模型结构振动台试验[J]. 振动与冲击, 2008, 27 (9): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200809017.htm

    HAN Qiang, DU Xiu-li, LIU Jing-bo, et al. Seismic response of isolated bridges with LRB under multi-directional earthquake-part (Ⅰ) -shaking table test of bridge model[J]. Journal of Vibration and Shock, 2008, 27 (9): 59-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200809017.htm
    [15]
    MAKRIS N, TAZOH T, YUN X, et al. Prediction of the measured response of a scaled soil-pile-superstructure system[J]. Soil Dynamics and Earthquake Engineering, 1997, 16 (2): 113-124. doi: 10.1016/S0267-7261(96)00037-1
    [16]
    王文剑, 楼梦麟, 马恒春, 等. 上部结构对桩基础地震应力影响的模型试验研究[J]. 地震工程与工程振动, 2001, 21 (2): 109-115 https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200102018.htm

    WANG Wen-jian, LOU Meng-lin, MA Heng-chun, et al. Study on effects of superstructure on pile foundation seismic stresses by model test[J]. Earthquake Engineering and Engineering Vibration, 2001, 21 (2): 109-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200102018.htm
    [17]
    李雨润. 液化土层中桩基横向动力响应研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2006.

    LI Yu-run. Study on lateral dynamic response of pile foundation in liquefiable soil[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2006. (in Chinese).
    [18]
    李雨润, 袁晓铭, 李帆. 基于API规范的液化土层桩基p-y曲线修正计算公式[J]. 地震工程与工程振动, 2010, 30 (6): 148-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201006024.htm

    LI Yu-run, YUAN Xiao-ming, LI Fan. Modified formula for calculating p-ycurves of pile foundation in liquefied soil layer based on API code[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30 (6): 148-153. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201006024.htm
    [19]
    倪克闯. 成层土中桩基与复合地基地震作用下工作性状振动台试验研究[D]. 北京: 中国建筑科学研究院, 2013.

    NI Ke-chuang. Table test of pile and composite foundations'dynamic behavior in layered soils subjected to earthquake excitation[D]. Beijing: China Academy of Building Research, 2013. (in Chinese).
    [20]
    冯士伦, 王建华. 饱和砂土中桩基的振动台试验[J]. 天津大学学报, 2006, 39 (8): 951-956. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX200608012.htm

    FENG Shi-lun, WANG Jian-hua. Shake table test on pile foundation in saturated sand[J]. Journal of Tianjin University, 2006, 39 (8): 951-956. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX200608012.htm
    [21]
    唐亮, 凌贤长, 徐鹏举, 等. 可液化场地桥梁群桩基础地震响应振动台试验研究[J]. 岩土工程学报, 2010, 32 (5): 672-680. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201005006.htm

    TANG Liang, LING Xian-zhang, XU Peng-ju, et al. Shaking table test on seismic response of pile groups of bridges in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (5): 672-680. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201005006.htm
    [22]
    孔德森, 李纯洁, 凌贤长, 等. 液化场地群桩-土-结构地震相互作用振动台试验研究[J]. 岩土工程学报, 2011, 33 (增2): 143-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S2027.htm

    KONG De-sen, LI Chun-jie, LING Xian-zhang, et al. Shaking table tests on pile group-soil-structure interaction to seismic loading on liquefied ground[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (S2): 143-149. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S2027.htm
    [23]
    李勇, 闫维明, 刘晶波, 等. 桥梁结构缩尺模型模拟地震振动台试验研究进展[J]. 工程抗震与加固改造, 2013, 35 (5): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201305001.htm

    LI Yong, YAN Wei-ming, LIU Jing-bo, et al. Study and development on shake table tests of scaled models of bridge engineering[J]. Earthquake Resistant Engineering and Retrofitting, 2013, 35 (5): 1-10. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201305001.htm
    [24]
    吕西林, 任红梅, 李培振, 等. 液化场地自由场体系的数值分析及振动台试验验证[J]. 岩石力学与工程学报, 2009, 28 (增2): 4046-4053. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2114.htm

    LYU Xi-lin, REN Hong-mei, LI Pei-zhen, et al. Numerical analysis of free field system in liquefiable site and validation of shaking table tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (S2): 4046-4053. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2114.htm
    [25]
    孙锐, 袁晓铭. 液化土层地震动模拟计算方法及验证[J]. 岩土力学, 2007, 28 (增1): 759-764. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1153.htm

    SUN Rui, YUAN Xiao-ming. Method of simulating seismic ground motion in liquefiable soil layer[J]. Rock and Soil Mechanics, 2007, 28 (S1): 759-764. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1153.htm
    [26]
    袁晓铭, 李雨润, 孙锐. 地面横向往返运动下可液化土层中桩基响应机理[J]. 土木工程学报, 2008, 41 (9): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200809017.htm

    YUAN Xiao-ming, LI Yu-run, SUN Rui. Mechanism of pile foundation response in liquefiable soils under seismic cyclic ground motion[J]. China Civil Engineering Journal, 2008, 41 (9): 103-110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200809017.htm
    [27]
    凌贤长, 郭明珠, 王东升, 等. 液化场地桩基桥梁震害响应大型振动台模型试验研究[J]. 岩土力学, 2006, 27 (1): 7-10, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200601001.htm

    LING Xian-zhang, GUO Ming-zhu, WANG Dong-sheng, et al. Large-scale shaking table model test of seismic response of bridge of pile foundation in ground of liquefaction[J]. Rock and Soil Mechanics, 2006, 27 (1): 7-10, 22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200601001.htm
    [28]
    凌贤长, 王东升, 王志强, 等. 液化场地桩-土-桥梁结构动力相互作用大型振动台模型试验研究[J]. 土木工程学报, 2004, 37 (11): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200411010.htm

    LING Xian-zhang, WANG Dong-sheng, WANG Zhi-qiang, et al. Large-scale shaking table model test of dynamic soilpile-bridge structure interaction in ground of liquefaction[J]. China Civil Engineering Journal, 2004, 37 (11): 67-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200411010.htm
    [29]
    袁林娟, 刘小生, 汪小刚, 等. 振动台土-箱结构模型动力特性及反应的解析分析[J]. 岩土工程学报, 2012, 34 (6): 1038-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206013.htm

    YUAN Lin-juan, LIU Xiao-sheng, WANG Xiao-gang, et al. Analytic solution of dynamic characteristics and responses of soil-box model for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (6): 1038-1042. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206013.htm
    [30]
    张敏政. 地震模拟实验中相似律应用的若干问题[J]. 地震工程与工程振动, 1997, 17 (2): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC702.006.htm

    ZHANG Min-zheng. Study on similitude for shaking table tests[J]. Earthquake Engineering and Engineering Vibration, 1997, 17 (2): 52-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC702.006.htm
    [31]
    黄维平, 邬瑞锋, 张前国. 配重不足时的动力试验模型与原型相似关系问题的探讨[J]. 地震工程与工程振动, 1994, 14 (4): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199404007.htm

    HUANG Wei-ping, WU Rui-feng, ZHANG Qian-guo. Study on the analogy between scale models with less ballast and their prototypes under shaking table test[J]. Journal of Earthquake Engineering and Engineering Vibration, 1994, 14 (4): 64-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199404007.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (713) PDF downloads(405) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return