LIU Hai-peng, JIANG Ying-jun, XUE Jin-shun, FANG Jian, CHEN Zhe-jiang, LI Shou-wei. Gradation optimization of thermal resistant SMA-13 asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 10-17. doi: 10.19818/j.cnki.1671-1637.2018.06.002
Citation: LIU Hai-peng, JIANG Ying-jun, XUE Jin-shun, FANG Jian, CHEN Zhe-jiang, LI Shou-wei. Gradation optimization of thermal resistant SMA-13 asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 10-17. doi: 10.19818/j.cnki.1671-1637.2018.06.002

Gradation optimization of thermal resistant SMA-13 asphalt mixture

doi: 10.19818/j.cnki.1671-1637.2018.06.002
More Information
  • Author Bio:

    LIU Hai-peng (1970-), male, doctoralstudent, 2015021060@chd.edu.cn

    JIANG Ying-jun (1975-), male, professor, PhD, jyj@chd.edu.cn

  • Received Date: 2018-08-23
  • Publish Date: 2018-12-25
  • In order to study the optimal dosage of refractory gravel in the thermal resistant SMA-13 asphalt mixture, the mixture proportion schemes were designed.In the schemes, the volume content of refractory gravel in the 2.36-4.75 mm ordinary aggregate was 100%, the volume content in the 4.75-9.5 mm ordinary aggregate was 20%, 40%, 60%, 80%, and 100%, respectively, and the volume content in the 9.5-13.2 mm ordinary aggregate was 10%, 20%, and 30%, respectively.The influence laws of refractory gravel content on the road property and heat resistant property of the SMA-13 asphalt mixture were studied, the optimum content ofrefractory gravel was put forward, and the road performance and thermal resistant performance of the SMA-13 asphalt mixture with this content were analyzed.Research result shows that compared with the ordinary SMA-13 asphalt mixture, when the 2.36-4.75 mm aggregate is entirely replaced by the refractory gravel, the road performance of the thermal resistant SMA-13 asphalt mixture reduces by about 3%, and the temperature of specimen decreases by about 1.4 ℃.When the 4.75-9.5 mm refractory gravel accounts for 60% of the same particle size of ordinary aggregates, the road performance of the thermal resistant SMA-13 asphalt mixture reduces by5%-10%, the temperature of the specimen decreases by about 5.7 ℃, and the heat resistance effect is obvious.When the content of the 4.75-9.5 mm refractory gravel is more than 60%, the road performance of the thermal resistant SMA-13 asphalt mixture decays rapidly, and the heat resistance effect is not obvious.When the content of the 4.75-9.5 mm refractory gravel is 60%-80%, the road performance of the thermal resistant SMA-13 asphalt mixture reduces by 10%-20%, and the temperature of the specimen decreases by less than 0.7 ℃.When the 9.5-13.2 mm refractory gravel accounts for 10%-20%of the same particle size of ordinary aggregates, the road performance of the thermal resistant SMA-13 asphalt mixture does not change basically, but the heat resistance effect is obvious.When the content reaches 20%, the road performance decreases by around 13%, and the temperature of the specimen decreases by about 7 ℃.When the content exceeds 20%, the road performance decreases sharply, the temperature of the specimen increases only by 0.1℃, and there is not heat resistance effect.Based on the best principle of cooling effect of the thermal resistant SMA-13 asphalt mixture, it is suggested that the contents of 2.36-4.75, 4.75-9.5and 9.5-13.2 mm refractory gravels account for 100%, 60%, and 20% of the same particle size of ordinary aggregates, respectively.

     

  • loading
  • [1]
    CARNIELO E, ZINZI M. Optical and thermal characterization of cool asphalts to mitigate urban temperatures and building cooling demand[J]. Building and Environment, 2013, 60: 56-65. doi: 10.1016/j.buildenv.2012.11.004
    [2]
    ERELL E, PEARLMUTTER D, BONEH D, et al. Effect of high-albedo materials on pedestrian heat stress in urban street canyons[J]. Urban Climate, 2014, 10: 367-386. doi: 10.1016/j.uclim.2013.10.005
    [3]
    HANSEN J, RUEDY R, SATO M, et al. Global surface temperature change[J]. Reviews of Geophysics, 2010, 48: 1-29.
    [4]
    李兴海. 沥青混合料的热物理特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    LI Xing-hai. Research on thermophysical characteristic of asphalt mixture[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese).
    [5]
    李湾湾. 沥青路面热阻及光反射阻热技术研究与应用[D]. 西安: 长安大学, 2017.

    LI Wan-wan. Research and application of asphalt pavement thermal resistance and light reflection heat insulation technology[D]. Xi'an: Chang'an University, 2017. (in Chinese).
    [6]
    MOHAJERANI A, BAKARIC J, JEFFREY-BAILEY T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete[J]. Journal of Environmental Management, 2017, 197: 522-538.
    [7]
    郑木莲, 何利涛, 高璇, 等. 基于降温功能的沥青路面热反射涂层性能分析[J]. 交通运输工程学报, 2013, 13 (5): 10-16. doi: 10.3969/j.issn.1671-1637.2013.05.002

    ZHENG Mu-lian, HE Li-tao, GAO Xuan, et al. Analysis of heat-reflective coating property for asphalt pavement based on cooling function[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (5): 10-16. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.05.002
    [8]
    MALLICK R B, CHEN Bao-liang, BHOWMICK S. Harvesting energy from asphalt pavements and reducing the heat island effect[J]. International Journal of Sustainable Engineering, 2009, 2 (3): 214-228. doi: 10.1080/19397030903121950
    [9]
    赵延庆, 黄大喜. 沥青混合料破坏阶段的黏弹性行为[J]. 中国公路学报, 2008, 21 (1): 25-28. doi: 10.3321/j.issn:1001-7372.2008.01.005

    ZHAO Yan-qing, HUANG Da-xi. Viscoelastic behavior of asphalt mixtures with damage stage[J]. China Journal of Highway and Transport, 2008, 21 (1): 25-28. (in Chinese). doi: 10.3321/j.issn:1001-7372.2008.01.005
    [10]
    GUNTOR N A A, FADHIL M, PONRAJ M, et al. Thermal performance of developed coating material as cool pavement material for tropical regions[J]. Journal of Materials in Civil Engineering, 2014, 26 (4): 755-760.
    [11]
    蒋甫. 考虑对流传热的多孔沥青路面降温性能[J]. 土木工程学报, 2011, 44 (10): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110023.htm

    JIANG Fu. Temperature reduction performance of porous asphalt pavement considering heat convection[J]. China Civil Engineering Journal, 2011, 44 (10): 138-142. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110023.htm
    [12]
    CHEN Mei-zhu, WAN Lu, LIN Jun-tao. Effect of phase-change materials on thermal and mechanical properties of asphalt mixtures[J]. Journal of Testing and Evaluation, 2012, 40 (5): 746-753.
    [13]
    QIN Ying-hong. A review on the development of cool pavements to mitigate urban heat island effect[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 445-459.
    [14]
    张争奇, 张世豪, 郭大同, 等. 彩色反射式沥青路面涂层的路用性能[J]. 江苏大学学报: 自然科学版, 2018, 39 (5): 611-616. doi: 10.3969/j.issn.1671-7775.2018.05.020

    ZHANG Zheng-qi, ZHANG Shi-hao, GUO Da-tong, et al. Road performance of color reflective asphalt pavement coating[J]. Journal of Jiangsu University: Natural Science Edition, 2018, 39 (5): 611-616. (in Chinese). doi: 10.3969/j.issn.1671-7775.2018.05.020
    [15]
    张鑫. 沥青路面热反射与热阻技术降温机理与应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    ZHANG Xin. Research on heat reflection and thermal resistance technology of asphalt pavement cooling mechanism and its application[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese).
    [16]
    刘佳. 热阻式路面材料研究[D]. 西安: 长安大学, 2009.

    LIU Jia. Study on the material of heat insulation pavement[D]. Xi'an: Chang'an University, 2009. (in Chinese).
    [17]
    FENG De-cheng, YI Jun-yan, WANG Dong-sheng. Performance and thermal evaluation of incorporating waste ceramic aggregates in wearing layer of asphalt pavement[J]. Journal of Materials in Civil Engineering, 2013, 25 (7): 857-863. doi: 10.1061/(ASCE)MT.1943-5533.0000788
    [18]
    CHEN Mei-zhu, ZHENG Jun, LI Fu-zhou, et al. Thermal performances of asphalt mixtures using recycled tyre rubber as mineral filler[J]. Road Materials and Pavement Design, 2015, 16 (2): 379-391. doi: 10.1080/14680629.2014.1002524
    [19]
    KUBO K, KIDO H. Study on pavement technologies to mitigate the heat island effect and their effectiveness[C]//International Society for Asphalt Pavements. 10th International Conference on Asphalt Pavements. Miami: Curran Associates, 2006: 1821-1830.
    [20]
    杨凤雷. 蛭石在热阻路面中的应用研究[D]. 西安: 长安大学, 2015.

    YANG Feng-lei. Study on application of vermiculite in the thermal resistance pavement[D]. Xi'an: Chang'an University, 2015. (in Chinese).
    [21]
    冯德成, 张鑫, 王广伟. 陶瓷热阻磨耗层材料开发及性能验证[J]. 公路, 2010 (11): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201011035.htm

    FENGDe-cheng, ZHANGXin, WANGGuang-wei. Development of ceramic thermal resistance wearing course materials and performance test[J]. Highway, 2010 (11): 151-155. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201011035.htm
    [22]
    赵秋华. 陶粒热阻式磨耗层材料试验研究[D]. 西安: 长安大学, 2012.

    ZHAO Qiu-hua. The experimental research on the material of the ceramic thermal resistance wearing course[D]. Xi'an: Chang'an University, 2012. (in Chinese).
    [23]
    邹玲, 郑南翔, 纪小平. 热阻沥青混合料薄层罩面阻热性能研究[J]. 武汉理工大学学报, 2014, 36 (6): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201406009.htm

    ZOU Ling, ZHENG Nan-xiang, JI Xiao-ping. Study on thermal resistance performance of thermal resistance thin surface of asphalt mixture[J]. Journal of Wuhan University of Technology, 2014, 36 (6): 41-46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201406009.htm
    [24]
    雷雨滋, 郑南翔, 纪小平. 热阻沥青混合料的降温效果及路用性能评价[J]. 武汉理工大学学报, 2013, 35 (11): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201311014.htm

    LEI Yu-zi, ZHENG Nan-xiang, JI Xiao-ping. Evaluation on temperature reduction and road performances of thermal[J]. Journal of Wuhan University of Technology, 2013, 35 (11): 68-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201311014.htm
    [25]
    袁自能. 缓解城市热岛效应沥青混合料性能试验分析[J]. 公路与汽运, 2016 (1): 118-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY201601031.htm

    YUAN Zi-neng. Test and analysis on the performance of asphalt mixture for ease urban heat island effect[J]. Highways and Automotive Applications, 2016 (1): 118-121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY201601031.htm
    [26]
    SINGH A, DAS A, BASU S. A numerical study on the effect of aggregate gradation on mechanical response of asphalt mix[J]. KSCE Journal of Civil Engineering, 2012, 16 (4): 594-600.
    [27]
    张超, 许志鸿, 杨瑞华, 等. 骨架密实型沥青混合料中高温性能与级配关系[J]. 同济大学学报: 自然科学版, 2008, 36 (5): 603-608. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200805008.htm

    ZHANG Chao, XU Zhi-hong, YANG Rui-hua et al. High temperature performance and gradation design in skeleton and dense construction asphalt mixture[J]. Journal of Tongji University: Natural Science, 2008, 36 (5): 603-608. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200805008.htm
    [28]
    李彦伟, 张倩, 谢来斌, 等. 沥青路面导热系数测试及其对路面温度场影响的模拟[J]. 功能材料, 2012, 43 (S1): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL2012S1033.htm

    LI Yan-wei, ZHANG Qian, XIE Lai-bin, et al. Testing of asphalt mixture thermal conductivity and its influences on asphalt pavement temperature field[J]. Functional Materials, 2012, 43 (S1): 129-132. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL2012S1033.htm
    [29]
    JIANG Ying-jun, YE Ya-qing, XUE Jin-shun, et al. Thermal resistant stone mastic asphalt surface and its antirutting performance[J]. Journal of Materials in Civil Engineering, 2018, 30 (11): 06018019-1-10.
    [30]
    王广伟. 热阻式超薄磨耗层的试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    WANG Guang-wei. Experimental research on the ultra-thin wearing course of thermal resistance function[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (688) PDF downloads(440) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return