LU Chen-xu, SHI Jin, DUAN Qi-yan, WEN Jun-yi. Dynamic interaction between metro vehicle and steel spring floating slab track under emergency braking condition[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 96-107. doi: 10.19818/j.cnki.1671-1637.2019.01.010
Citation: LU Chen-xu, SHI Jin, DUAN Qi-yan, WEN Jun-yi. Dynamic interaction between metro vehicle and steel spring floating slab track under emergency braking condition[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 96-107. doi: 10.19818/j.cnki.1671-1637.2019.01.010

Dynamic interaction between metro vehicle and steel spring floating slab track under emergency braking condition

doi: 10.19818/j.cnki.1671-1637.2019.01.010
More Information
  • Author Bio:

    LU Chen-xu(1994-), male, doctoralstudent, 1564663184@qq.com

    SHI Jin(1980-), male, professor, PhD, jshi@bjtu.edu.cn

  • Received Date: 2018-08-01
  • Publish Date: 2019-02-25
  • To optimize the design of steel spring floating slab track on the grade, based on the consideration of longitudinal wheel-rail relationship and structure characteristics of steel spring floating slab track, the dynamic interaction model of metro vehicle and steel spring floating slab track under the emergency braking condition was established through the multi-body dynamics theory and finite element method. The validity of the model was verified through the multi-body dynamics software UM. The dynamic responses of vehicle and track under the emergency braking condition were analyzed. Research result shows that the average relative errors of longitudinal acceleration of car body and longitudinal wheel-rail force calculated by the UM and the model in this paper are 1.3% and 2.8%, respectively. During the emergency braking process, the car body is always in the state of forward pitching and longitudinal vibration, resulting in the increased load in the front wheel and the decreased load in the rear wheel. Owing to the discontinuities between the slabs, a longitudinal relative dislocation occurs between the track and floating slab. The special attentions should be paid to the longitudinal uncoordinated deformation between the rail and floating slab. For the scheme of arranging a pair of isolators at the intervals of two sets of fasteners (scheme 1), the vertical displacement of rail at the end of slab is 0.2 mm larger than that at the middle of slab. For the scheme of arranging a pair of isolators at the intervals of two sets of fasteners, then arranging a pair of isolators at the intervals of three sets of fasteners (scheme 2), the vertical displacement of rail at the end of slab is 0.5 mm smaller than that at the middle of slab. Under the two layout schemes, the difference of longitudinal deformation of track is no more than 5%, and the difference of longitudinal force acting on fastener and steel spring is no more than 15%. The short wave track irregularity significantly increases the vertical vibrations of rail and floating slab, and the maximum vertical acceleration of rail can reach up to approximately 15g in the presence of track irregularity. Steel spring floating slab can reduce the vertical vibration transmitted to the bottom of the foundation, and the acceleration decreases by approximately 0.2 m·s-2. However, the low-frequency vertical vibrations of rail and floating slab amplify significantly, and the vibration increases by approximately 15 dB.

     

  • loading
  • [1]
    王伟华, 刘克飞, 李培刚. 长大坡道桥上单元板式无砟轨道纵向力学特性分析[J]. 铁道工程学报, 2011 (2): 65-70. doi: 10.3969/j.issn.1006-2106.2011.02.013

    WANG Wei-hua, LIU Ke-fei, LI Pei-gang. Analysis of longitudinal mechanics behaviour of ballastless slab track on long grade bridge[J]. Journal of Railway Engineering Society, 2011 (2): 65-70. (in Chinese). doi: 10.3969/j.issn.1006-2106.2011.02.013
    [2]
    沈彬然, 王冠, 刘浩, 等. 桥上纵连板在制动力作用下梁轨相互作用影响分析[J]. 铁道建筑, 2016 (3): 127-130, 146. doi: 10.3969/j.issn.1003-1995.2016.03.31

    SHEN Bin-ran, WANG Guan, LIU Hao, et al. Analysis of girder-rail interaction under braking effect of longitudinal connected slab on bridge[J]. Railway Engineering, 2016 (3): 127-130, 146. (in Chinese). doi: 10.3969/j.issn.1003-1995.2016.03.31
    [3]
    徐庆元, 张旭久. 高速铁路博格纵连板桥上无砟轨道纵向力学特性[J]. 中南大学学报(自然科学版), 2009, 40 (2): 526-532. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200902048.htm

    XU Qing-yuan, ZHANG Xu-jiu. Longitudinal forces characteristic of Bogl longitudinal connected ballastless track on high-speed railway bridge[J]. Journal of Central South University (Science and Technology), 2009, 40 (2): 526-532. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200902048.htm
    [4]
    闫斌, 戴公连. 考虑加载历史的高速铁路梁轨相互作用分析[J]. 铁道学报, 2014, 36 (6): 75-80. doi: 10.3969/j.issn.1001-8360.2014.06.012

    YAN Bin, DAI Gong-lian. Analysis of interaction between continuously-welded rail and high-speed railway bridges considering loading-history[J]. Journal of the China Railway Society, 2014, 36 (6): 75-80. (in Chinese). doi: 10.3969/j.issn.1001-8360.2014.06.012
    [5]
    蔡小培, 高亮, 孙汉武, 等. 桥上纵连板式无砟轨道无缝线路力学性能分析[J]. 中国铁道科学, 2011, 32 (6): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106006.htm

    CAI Xiao-pei, GAO Liang, SUN Han-wu, et al. Analysis on the mechanical properties of longitudinally connected ballastless track continuously welded rail on bridge[J]. China Railway Science, 2011, 32 (6): 28-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106006.htm
    [6]
    方利, 王志强, 李成辉. 简支梁桥上CRTSⅡ型板式无砟轨道制动力影响因素分析[J]. 铁道学报, 2012, 34 (1): 72-76. doi: 10.3969/j.issn.1001-8360.2012.01.013

    FANG Li, WANG Zhi-qiang, LI Cheng-hui. Analysis on influencing factors of braking force of CRTS Ⅱ ballastless track slab on simply-supported beam bridges[J]. Journal of the China Railway Society, 2012, 34 (1): 72-76. (in Chinese). doi: 10.3969/j.issn.1001-8360.2012.01.013
    [7]
    徐庆元, 陈秀方, 李树德. 高速铁路桥上无缝线路纵向附加力研究[J]. 中国铁道科学, 2006, 27 (3): 8-12. doi: 10.3321/j.issn:1001-4632.2006.03.002

    XU Qing-yuan, CHEN Xiu-fang, LI Shu-de. Study on the additional longitudinal forces transmission between continuously welded rails and high-speed railway bridges[J]. China Railway Science, 2006, 27 (3): 8-12. (in Chinese). doi: 10.3321/j.issn:1001-4632.2006.03.002
    [8]
    YAN Bin, DAI Gong-lian, GUO Wen-hua, et al. Longitudinal force in continuously welded rail on long-span tied arch continuous bridge carrying multiple tracks[J]. Journal of Central South University, 2015, 22 (5): 2001-2006. doi: 10.1007/s11771-015-2721-5
    [9]
    木东升, 周宇, 韩延彬, 等. 轨道综合作业对高速铁路有砟轨道几何不平顺改善效果[J]. 交通运输工程学报, 2018, 18 (5): 90-99. http://transport.chd.edu.cn/article/id/201805009

    MU Dong-sheng, ZHOU Yu, HAN Yan-bin, et al. Effect of track comprehensive maintenance on geometry irregularity improvement of ballast track in high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (5): 90-99. (in Chinese). http://transport.chd.edu.cn/article/id/201805009
    [10]
    RUGE P, BIRK C. Longitudinal forces in continuously welded rails on bridgedecks due to nonlinear track-bridge interaction[J]. Computers and Structures, 2007, 85 (7/8): 458-475.
    [11]
    DAI Gong-lian, LIU Wen-shuo. Applicability of small resistance fastener on long-span continuous bridges of high-speed railway[J]. Journal of Central South University, 2013, 20 (5): 1426-1433. doi: 10.1007/s11771-013-1631-7
    [12]
    吴定俊, 石龙, 李奇. 梁轨纵向位移阻力系数双弹簧模型研究[J]. 工程力学, 2015, 32 (10): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201510012.htm

    WU Ding-jun, SHI Long, LI Qi. A double-spring model for longitudinal displacement-resistance relationship of fasteners in rail-bridge interaction analysis[J]. Engineering Mechanics, 2015, 32 (10): 75-81. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201510012.htm
    [13]
    周宇, 木东升, 邝迪峰, 等. 城市轨道交通钢轨磨耗和裂纹萌生分析与选型建议[J]. 交通运输工程学报, 2018, 18 (4): 82-89. http://transport.chd.edu.cn/article/id/201805009

    ZHOU Yu, MU Dong-sheng, KUANG Di-feng, et al. Analysis on rail wear and crack initiation and recommendation on rail selection in urban rail transit[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (4): 82-89. (in Chinese). http://transport.chd.edu.cn/article/id/201805009
    [14]
    吴亮秦, 吴定俊, 李奇. 城市轨道交通桥梁列车制动力试验研究[J]. 铁道学报, 2012, 34 (3): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201203021.htm

    WU Liang-qin, WU Ding-jun, LI Qi. Experiment study on braking force for urban rail transit bridge[J]. Journal of the China Railway Society, 2012, 34 (3): 88-93. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201203021.htm
    [15]
    TOTH J, RUGE P. Spectral assessment of mesh adaptations for the analysis of the dynamical longitudinal behavior of railway bridges[J]. Archive of Applied Mechanics, 2001, 71 (6/7): 453-462.
    [16]
    李宏年, 朱晞, 季文玉. PC简支梁铁路桥承受制动力的动力分析[J]. 铁道学报, 2000, 22 (4): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200004016.htm

    LI Hong-nian, ZHU Xi, JI Wen-yu. Dynamic analysis of simply supported PC beam railway bridges under braking force[J]. Journal of the China Railway Society, 2000, 22 (4): 64-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200004016.htm
    [17]
    潘鹏, 雷晓燕, 张鹏飞, 等. 制动荷载作用下桥上无砟轨道动力响应分析[J]. 铁道科学与工程学报, 2017, 14 (11): 2309-2322. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201711006.htm

    PAN Peng, LEI Xiao-yan, ZHANG Peng-fei, et al. Dynamic response analysis of ballastless track on bridge under braking load[J]. Journal of Railway Science and Engineering, 2017, 14 (11): 2309-2322. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201711006.htm
    [18]
    朱志辉, 闫铭铭, 徐智伟, 等. 制动工况下高墩铁路桥梁纵向动力响应研究[J]. 铁道工程学报, 2017 (5): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201705010.htm

    ZHU Zhi-hui, YAN Ming-ming, XU Zhi-wei, et al. Response analysis of railway bridge with high piers due to vehicle braking[J]. Journal of Railway Engineering Society, 2017 (5): 52-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201705010.htm
    [19]
    JU S H, LIN H T. A finite element model of vehicle-bridge interaction considering braking and acceleration[J]. Journal of Sound and Vibration, 2007, 303 (1/2): 46-57.
    [20]
    程潜, 张楠, 夏禾, 等. 考虑制动条件的高速列车-轨道-桥梁系统动力响应分析[J]. 中国铁道科学, 2013, 34 (1): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201301001.htm

    CHENG Qian, ZHANG Nan, XIA He, et al. Dynamic response analysis of vehicle-track-bridge system considering braking conditions for high-speed railway[J]. China Railway Science, 2013, 34 (1): 8-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201301001.htm
    [21]
    沈锐利, 王江浩. 铁路悬索桥在制动力作用下的动力响应分析[J]. 桥梁建设, 2016, 46 (6): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606005.htm

    SHEN Rui-li, WANG Jiang-hao. Analysis of dynamic responses of railway suspension bridge under action of train braking force[J]. Bridge Construction, 2016, 46 (6): 24-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606005.htm
    [22]
    YANG Y B, WU Y S. A versatile element for analyzing vehicle-bridge interaction response[J]. Engineering Structures, 2001, 23 (5): 452-469.
    [23]
    吕龙, 李建中. 列车制动和运行下大跨度公铁两用斜拉桥纵向振动分析[J]. 铁道学报, 2017, 39 (3): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201703015.htm

    LYU Long, LI Jian-zhong. Study on longitudinal vibration of long-span rail-cum-road cable-stayed bridge induced by train braking and running[J]. Journal of the China Railway Society, 2017, 39 (3): 90-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201703015.htm
    [24]
    陈士安, 杨鑫, 姚明, 等. 紧急制动工况下电磁式磁轨制动器极靴磨损计算方法[J]. 交通运输工程学报, 2017, 17 (1): 82-92. http://transport.chd.edu.cn/article/id/201701010

    CHEN Shi-an, YANG Xin, YAO Ming, et al. Pole shoe abrasion calculation method of electromagnetic track brake under emergency braking condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (1): 82-92. (in Chinese). http://transport.chd.edu.cn/article/id/201701010
    [25]
    蒋吉清, 王永安, 魏纲, 等. 基于剪力铰的浮置板轨道减振性能优化分析[J]. 中国铁道科学, 2017, 38 (4): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201704003.htm

    JIANG Ji-qing, WANG Yong-an, WEI Gang, et al. Optimum analysis of vibration reduction performance for floating slab track based on shear hinge[J]. China Railway Science, 2017, 38 (4): 15-23. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201704003.htm
    [26]
    ZHAI Wan-ming, SUN Xiang. A detailed model for investigating vertical interaction between railway vehicle and track[J]. Vehicle System Dynamics, 1994, 23 (S1): 603-615.
    [27]
    杨静静, 张楠, 夏禾. 车轨耦合振动中4种轮轨竖向接触模型的适用性比较分析[J]. 中国铁道科学, 2016, 37 (6): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201606002.htm

    YANG Jing-jing, ZHANG Nan, XIA He. Comparative analysis on applicability of four wheel-rail vertical contact models for coupling vibration of vehicle-track system[J]. China Railway Science, 2016, 37 (6): 11-20. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201606002.htm
    [28]
    朱志辉, 王力东, 龚威, 等. 多种垂向轮轨关系的对比及改进的车-线-桥系统迭代模型的建立[J]. 中南大学学报(自然科学版), 2017, 48 (6): 1585-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201706023.htm

    ZHU Zhi-hui, WANG Li-dong, GONG Wei, et al. Comparative analysis of several types of vertical wheel/rail relationship and construction of an improved iteration model for train-track-bridge system[J]. Journal of Central South University (Science and Technology), 2017, 48 (6): 1585-1593. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201706023.htm
    [29]
    张楠, 夏禾, 程潜, 等. 制动力作用下车辆-车站结构耦合系统分析[J]. 振动与冲击, 2011, 30 (2): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201102029.htm

    ZHANG Nan, XIA He, CHENG Qian, et al. Analysis method for a vehicle structure coupled system under braking force[J]. Journal of Vibration and Shock, 2011, 30 (2): 138-143. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201102029.htm
    [30]
    何越磊, 李再帏, 盛春玲, 等. 不同地铁线路条件下轨道谱的特性分析[J]. 铁道工程学报, 2014 (8): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201407019.htm

    HE Yue-lei, LI Zai-wei, SHENG Chun-ling, et al. Characteristic analysis of track spectrums of different subway line conditions[J]. Journal of Railway Engineering Society, 2014 (8): 99-104. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201407019.htm
    [31]
    李再帏, 练松良, 李秋玲, 等. 城市轨道交通轨道不平顺谱分析[J]. 华东交通大学学报, 2011, 28 (5): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201105019.htm

    LI Zai-wei, LIAN Song-liang, LI Qiu-ling, et al. Characteristic analysis of track irregularity spectrum of urban rail transit[J]. Journal of East China Jiaotong University, 2011, 28 (5): 83-87. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201105019.htm
    [32]
    徐庆元. 短波随机不平顺对列车-板式无砟轨道-桥梁系统动力特性影响[J]. 土木工程学报, 2011, 44 (10): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110022.htm

    XU Qing-yuan. Influence of short-wave random irregularity on the dynamic characteristics of train-slab track-bridge system[J]. China Civil Engineering Journal, 2011, 44 (10): 132-137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110022.htm
    [33]
    李斌, 刘学毅. 基于随机振动理论的我国中高速铁路有砟轨道设计轮载研究[J]. 铁道学报, 2010, 32 (5): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201005027.htm

    LI Bin, LIU Xue-yi. Study on designed dynamic wheel loads of middle-speed and high-speed railways in China based on theory of random vibration[J]. Journal of the China Railway Society, 2010, 32 (5): 114-118. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201005027.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1167) PDF downloads(1033) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return