FENG Zhong-ju, CHEN Hui-yun, YUAN Feng-bin, YIN Hong-hua, LI Xiao-xiong, LIU Chuang, ZHANG Fu-qiang, WANG Meng-meng, LI Shao-jie. Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 36-48. doi: 10.19818/j.cnki.1671-1637.2019.02.004
Citation: FENG Zhong-ju, CHEN Hui-yun, YUAN Feng-bin, YIN Hong-hua, LI Xiao-xiong, LIU Chuang, ZHANG Fu-qiang, WANG Meng-meng, LI Shao-jie. Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 36-48. doi: 10.19818/j.cnki.1671-1637.2019.02.004

Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action

doi: 10.19818/j.cnki.1671-1637.2019.02.004
More Information
  • Author Bio:

    FENG Zhong-ju (1965-), male, professor, PhD, ysf@gl.chd.edu.cn

    CHEN Hui-yun (1995-), female, doctoral student, 992387012@qq.com

  • Received Date: 2018-10-11
  • Publish Date: 2019-04-25
  • Based on the Hainan Puqian Bridge, the distance effect and bearing characteristics of bridge pile foundation under the fault-pile-rock interaction were analyzed by the indoor model test and numerical simulation. Research result shows that, in the model test, for a pile foundation with a diameter of 6.3 cm and a length of 60 cm, when the horizontal distance between the fault and the pile foundation increases from 9.45 cm to 22.05 cm, the bearing capacity of pile foundation increases by 26.7%. When the horizontal distance increases from 22.05 cm to 31.50 cm, the bearing capacity increases by only 3.8%, and the influence degree of the horizontal distance on the vertical bearing capacity reduces to 6.5% and may be neglected. When the length of pile foundation is constant and the load is the same, the smaller the horizontal distance, the smaller the change of axial force of pile foundation. The horizontal distance increases from 9.45 cm to 22.05 cm, the side resistance of pile foundation increases by 0.059 kN at the 30 cm of pile foundation length, and the influence degree decreases by 44.5%. When the horizontal distance increases from 22.05 cm to 31.50 cm, the side resistance increases by 0.029 kN, and the influence degree decreases by 8.3%. In the numerical simulation, under the condition that the diameter, length and overburden thickness of pile foundation are 1.5, 30, and 10 m, respectively, when the horizontal distance increases from 1.5 m to 6.0 m, the increment of the bearing capacity reduces from 11.0% to 6.5%. When the horizontal distance increases from 6.0 m to 7.5 m, the increment reduces to 4.9%. When the horizontal distance reduces from 7.5 m to 1.5 m, the axial force of pile foundation decreases gradually along the length direction of pile foundation. When the length of pile foundation is constant and the load is the same, the smaller the horizontal distance, the smaller the change of axial force of pile foundation. When the horizontal distance increases from 1.5 m to 6.0 m, the side resistance of pile foundation at the 16 m of pile foundation length increases by 1.90 MN, and the influence degree of the horizontal distance on the side resistance reduces by 28.0%. When the horizontal distance increases from 6.0 m to 7.5 m, the pile side resistance increases by 0.33 MN, and the influence degree decreases by 5.0%. The results of model test and numerical simulation show that the vertical bearing characteristics of bridge pile foundation are greatly affected by the horizontal distance between the fault and the pile foundation when the horizontal distance is less than five times the pile foundation diameter. When the horizontal distance is more than five times the pile foundation diameter, its influence is smaller or even negligible. The side resistance ratio and influence degrees of the horizontal distance on the bearing capacity and side resistance of pile foundation decrease rapider in the numerical simulation than in the indoor model test. When the horizontal distance is five times the pile foundation diameter, the numerical simulation values reduce by 0.174, 2.2%, and 6.0% compared with the indoor model test values, respectively. Therefore, the numerical simulation result is ideal and can be used as engineering reference.

     

  • loading
  • [1]
    刘闯, 冯忠居, 张福强, 等. 地震作用下特大型桥梁嵌岩桩基础动力响应[J]. 交通运输工程学报, 2018, 18 (4): 53-62. doi: 10.3969/j.issn.1671-1637.2018.04.006

    LIU Chuang, FENG Zhong-ju, ZHANG Fu-qiang, et al. Dynamic response of rock-sockted pile foundation for extra-large bridge under earthquake action[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (4): 53-62. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.04.006
    [2]
    林金舜. 沙溪特大桥断层破碎带大直径桩基施工技术[J]. 公路, 2019 (3): 106-110. doi: 10.3969/j.issn.1671-2668.2019.03.025

    LIN Jin-shun. Construction technology of large-diameter pile foundation in fault fracture zone of Shaxi Extra Large Bridge[J]. Highway, 2019 (3): 106-110. (in Chinese). doi: 10.3969/j.issn.1671-2668.2019.03.025
    [3]
    GOEL R K, CHOPRA A K. Nonlinear analysis of ordinary bridges crossing fault-rupture zones[J]. Journal of Bridge Engineering, 2009, 14 (3): 216-224. doi: 10.1061/(ASCE)1084-0702(2009)14:3(216)
    [4]
    DI LAORA R, ROVITHIS E. Kinematic bending of fixed-head piles in nonhomogeneous soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141 (4): 04014126-1-10. doi: 10.1061/(ASCE)GT.1943-5606.0001270
    [5]
    SAIIDI M, VOSOOGHI A, CHOI H, et al. Shake table studies and analysis of a two-span RC bridge model subjected to a fault rupture[J]. Journal of Bridge Engineering, 2014, 19 (8): A4014003-1-9. doi: 10.1061/(ASCE)BE.1943-5592.0000478
    [6]
    金保和. 羽状断层不良地质带上的桥梁设计[J]. 桥梁建设, 1996 (4): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS604.006.htm

    JIN Bao-he. Design of bridges located in poor geologic zone of pinnate fault[J]. Bridge Construction, 1996 (4): 24-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS604.006.htm
    [7]
    夏春旭, 柳英洲, 柳春光. 桥梁墩柱在近断层水平多脉冲地震动作用下响应特征分析[J]. 振动与冲击, 2017, 36 (2): 95-100, 110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201702015.htm

    XIA Chun-xu, LIU Ying-zhou, LIU Chun-guang. Characteristic response analysis of bridge piers under multi-pulse near-fault earthquake excitation[J]. Journal of Vibration and Shock, 2017, 36 (2): 95-100, 110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201702015.htm
    [8]
    帅少军, 戴万江, 罗嗣碧. 跨断裂带桥梁设计研究[J]. 公路, 2016 (4): 127-130. doi: 10.3969/j.issn.1002-0268.2016.04.020

    SHUAI Shao-jun, DAI Wan-jiang, LUO Si-bi. Study on the design of bridges across fault zones[J]. Highway, 2016 (4): 127-130. (in Chinese). doi: 10.3969/j.issn.1002-0268.2016.04.020
    [9]
    戴自航, 陈林靖. 多层地基中水平荷载桩计算m法的两种数值解[J]. 岩土工程学报, 2007, 29 (5): 690-696. doi: 10.3321/j.issn:1000-4548.2007.05.010

    DAI Zi-hang, CHEN Lin-jing. Two numerical solutions of laterally loaded piles installed in multi-layered soils by m method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (5): 690-696. (in Chinese). doi: 10.3321/j.issn:1000-4548.2007.05.010
    [10]
    王年香, 章为民. 特大型桥梁群桩基础承载特性离心模型试验研究[J]. 公路交通科技, 2008, 25 (4): 79-83. doi: 10.3969/j.issn.1002-0268.2008.04.016

    WANG Nian-xiang, ZHANG Wei-min. Centrifuge modeling on bearing behavior of large bridge group pile foundation[J]. Journal of Highway and Transportation Research and Development, 2008, 25 (4): 79-83. (in Chinese). doi: 10.3969/j.issn.1002-0268.2008.04.016
    [11]
    赵明华, 罗卫华, 雷勇, 等. 汨水河特大桥嵌岩桩承载特性试验研究[J]. 湖南大学学报(自然科学版), 2014, 41 (3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201403001.htm

    ZHAO Ming-hua, LUO Wei-hua, LEI Yong, et al. In-site load-carrying characteristics test of rock-socked piles of Mishui River Bridge[J]. Journal of Hunan University (Natural Sciences), 2014, 41 (3): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201403001.htm
    [12]
    曾波. 断层破碎带大直径深桩基础的施工[J]. 中外公路, 2002, 22 (5): 80-81. doi: 10.3969/j.issn.1671-2579.2002.05.027

    ZENG Bo. Construction of large diameter and deep pile foundation in fault fracture zone[J]. Journal of China and Foreign Highway, 2002, 22 (5): 80-81. (in Chinese). doi: 10.3969/j.issn.1671-2579.2002.05.027
    [13]
    冯忠居, 王富春, 苏航州, 等. 黄土洞穴对桥梁桩基竖向承载特性影响的离心模型试验[J]. 长安大学学报(自然科学版), 2017, 37 (2): 35-44. doi: 10.3969/j.issn.1671-8879.2017.02.005

    FENG Zhong-ju, WANG Fu-chun, SU Hang-zhou, et al. Centrifuge model test on effect of underground loess cave on vertical bearing characteristic of bridge pile foundation[J]. Journal of Chang'an University (Natural Science Edition), 2017, 37 (2): 35-44. (in Chinese). doi: 10.3969/j.issn.1671-8879.2017.02.005
    [14]
    冯忠居, 王富春, 张其浪, 等. 钢管混凝土复合桩横轴向承载特性离心模型试验研究[J]. 土木工程学报, 2018, 51 (1): 114-123, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201801014.htm

    FENG Zhong-ju, WANG Fu-chun, ZHANG Qi-lang, et al. Centrifuge model tests of horizontal bearing characteristics of steel pipe concrete composite pile[J]. China Civil Engineering Journal, 2018, 51 (1): 114-123, 128. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201801014.htm
    [15]
    曹树刚, 洛锋, 程崇胜, 等. 富水断层破碎带井筒围岩控制[J]. 岩石力学与工程学报, 2014, 33 (8): 1536-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408004.htm

    CAO Shu-gang, LUO Feng, CHENG Chong-sheng, et al. Surrounding rock control of shaft in water enriched fault fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (8): 1536-1545. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408004.htm
    [16]
    郭为国. 断层破碎带深桩基的处理[J]. 公路, 1998 (8): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL199808001.htm

    GUO Wei-guo. Treatment of deep pile foundation in fault fracture zone[J]. Highway, 1998 (8): 6-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL199808001.htm
    [17]
    苏航州. 黄土暗穴对公路桥梁桩基础承载特性影响的离心模型试验研究[D]. 西安: 长安大学, 2016.

    SU Hang-zhou. The study of centrifugal modeling test on load-bearing characteristics affected by loess hidden caves of highway bridges pile foundation[D]. Xi'an: Chang'an University, 2016. (in Chinese).
    [18]
    劳伟康, 周立运, 王钊. 大直径柔性钢管嵌岩桩水平承载力试验与理论分析[J]. 岩石力学与工程学报, 2004, 23 (10): 1770-1777. doi: 10.3321/j.issn:1000-6915.2004.10.033

    LAO Wei-kang, ZHOU Li-yun, WANG Zhao. Field test and theoretical analysis on flexible large-diameter rock-socketed steel pipe piles under lateral load[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (10): 1770-1777. (in Chinese). doi: 10.3321/j.issn:1000-6915.2004.10.033
    [19]
    李晋, 冯忠居, 谢永利. 大直径空心桩承载性状的数值仿真[J]. 长安大学学报(自然科学版), 2004, 24 (4): 36-39. doi: 10.3321/j.issn:1671-8879.2004.04.009

    LI Jin, FENG Zhong-ju, XIE Yong-li. Numerical simulation of large diameter hollow pile bearing performance[J]. Journal of Chang'an University (Natural Science Edition), 2004, 24 (4): 36-39. (in Chinese). doi: 10.3321/j.issn:1671-8879.2004.04.009
    [20]
    李勇, 闫维明, 刘晶波, 等. 桥梁结构缩尺模型模拟地震振动台试验研究进展[J]. 工程抗震与加固改造, 2013, 35 (5): 1-10. doi: 10.3969/j.issn.1002-8412.2013.05.001

    LI Yong, YAN Wei-ming, LIU Jing-bo, et al. Study and development on shake table tests of scaled models of bridge engineering[J]. Earthquake Resistant Engineering and Retrofitting, 2013, 35 (5): 1-10. (in Chinese). doi: 10.3969/j.issn.1002-8412.2013.05.001
    [21]
    史文清, 王建华, 陈锦剑. 考虑桩土接触面特性的水平受荷单桩数值分析[J]. 上海交通大学学报, 2006, 40 (8): 1457-1460. doi: 10.3321/j.issn:1006-2467.2006.08.043

    SHI Wen-qing, WANG Jian-hua, CHEN Jin-jian. Numerical analysis of the laterally loaded pile considering the unlinear characteristic of pile soil interface[J]. Journal of Shanghai Jiaotong University, 2006, 40 (8): 1457-1460. (in Chinese). doi: 10.3321/j.issn:1006-2467.2006.08.043
    [22]
    袁林娟, 刘小生, 汪小刚, 等. 振动台土-箱结构模型动力特性及反应的解析分析[J]. 岩土工程学报, 2012, 34 (6): 1038-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206013.htm

    YUAN Lin-juan, LIU Xiao-sheng, WANG Xiao-gang, et al. Analytic solution of dynamic characteristics and responses of soil-box model for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (6): 1038-1042. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206013.htm
    [23]
    董芸秀, 冯忠居, 郝宇萌, 等. 岩溶区桥梁桩基承载力试验与合理嵌岩深度[J]. 交通运输工程学报, 2018, 18 (6): 27-36. doi: 10.3969/j.issn.1671-1637.2018.06.004

    DONG Yun-xiu, FENG Zhong-ju, HAO Yu-meng, et al. Experiment on bearing capacity of bridge pile foundations in karst area sand reasonable rock-socketed depth[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (6): 27-36. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.06.004
    [24]
    刘恺德, 刘泉声, 刘滨, 等. 地质异常带巷道稳定控制对策及效果研究[J]. 岩石力学与工程学报, 2011, 30 (12): 2486-2497. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112014.htm

    LIU Kai-de, LIU Quan-sheng, LIU Bin, et al. Research on control measures and effects for roadway stability in geological anomaly zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (12): 2486-2497. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112014.htm
    [25]
    陈思晓, 冯忠居, 何静斌. 海洋环境基桩海水泥浆工程特性试验研究[J]. 桥梁建设, 2018, 48 (6): 70-74. doi: 10.3969/j.issn.1003-4722.2018.06.013

    CHEN Si-xiao, FENG Zhong-ju, HE Jing-bin. Experimental study on engineering characteristics of seawater mortar for bored piles in marine environment[J]. Bridge Construction, 2018, 48 (6): 70-74. (in Chinese). doi: 10.3969/j.issn.1003-4722.2018.06.013
    [26]
    胡盛, 杨华振, 罗嗣碧, 等. 海南铺前大桥总体设计[J]. 桥梁建设, 2016, 46 (1): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201601022.htm

    HU Sheng, YANG Hua-zhen, LUO Si-bi, et al. Overall design of Puqian Bridge in Hainan[J]. Bridge Construction, 2016, 46 (1): 94-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201601022.htm
    [27]
    高广运, 宋健. 近断层速度脉冲地震动引起的边坡永久位移预测模型[J]. 岩土力学, 2014, 35 (5): 1340-1347. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405020.htm

    GAO Guang-yun, SONG Jian. Predictive models for permanent displacement of slopes induced by near-fault pulse-like ground motions[J]. Rock and Soil Mechanics, 2014, 35 (5): 1340-1347. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405020.htm
    [28]
    惠迎新, 毛明杰, 刘海峰, 等. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版), 2018, 48 (6): 1725-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201806012.htm

    HUI Ying-xin, MAO Ming-jie, LIU Hai-feng, et al. Influence of structural seismic response of bridges crossing active fault[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48 (6): 1725-1734. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201806012.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (819) PDF downloads(396) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return