LI Bin. Hierarchical, parallel, heterogeneous and reconfigurable computation model of container terminal handling system[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 136-155. doi: 10.19818/j.cnki.1671-1637.2019.02.013
Citation: LI Bin. Hierarchical, parallel, heterogeneous and reconfigurable computation model of container terminal handling system[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 136-155. doi: 10.19818/j.cnki.1671-1637.2019.02.013

Hierarchical, parallel, heterogeneous and reconfigurable computation model of container terminal handling system

doi: 10.19818/j.cnki.1671-1637.2019.02.013
More Information
  • Author Bio:

    LI Bin (1979-), male, professor, PhD, mse2007_lb@whut.edu.cn

  • Received Date: 2018-09-25
  • Publish Date: 2019-04-25
  • Based on computational thinking and computational lens, the loading and unloading operations and the scheduling decisions of container terminals were analyzed. Based on the parallel computation, heterogeneous computation and reconfigurable computation, a hierarchical, parallel, heterogeneous, and reconfigurable computation model of container terminal handling (HPHRCM-CTH) from the perspective of computation logistics was proposed. The design philosophies and operational mechanisms of typical computing architectures in the computer science were generalized, migrated, modified, fused, and customized to the container terminal handling system (CTHS), and the hybrid scheduling strategy for the HPHRCM-CTH was presented. A new abstract computation model and engineering solution to the container terminal scheduling were put forward. Taking a large container terminal as an example, the design and performance evaluation of logistics generalized computation automation were carried out based on the HPHRCM-CTH. Analysis result shows that the HPHRCM-CTH can determine the upper limit of container throughput that is about 2.75 times of the annual design capacity of the container terminal in the example. At the condition of full load, the scheduling strategies of load balancing for the pending queues of containers (LB-PQC) and ship types (LB-PQS) can shorten the logistics generalized computation task latency (LGC-TL) of large container mainline ships by about 17 h. At the condition of obvious job overload, the LB-PQC can reduce the LGC-TL by 100-110 h, while the LB-PQS can reduce the LGC-TL by about 120 h. At the conditions of full load and job overload, the LB-PQC and LB-PQS can reduce the logistics generalized computation memory access time (LGC-MAT) for large container mainline ships by 1-2 h, and the LB-PQS performs better under the conditions of job overload. The LB-PQC and LB-PQS both can give well priority to the key service liners, and have the respective applicable condition and scheduling emphasis, and the terminal manager can choose the right one according to the specific situation.

     

  • loading
  • [1]
    LEE Chung-yee, SONG Dong-ping. Ocean container transport in global supply chains: overview and research opportunities[J]. Transportation Research Part B: Methodological, 2017, 95: 442-474. doi: 10.1016/j.trb.2016.05.001
    [2]
    CRAINIC T G, PERBOLI G, ROSANO M. Simulation of intermodal freight transportation systems: a taxonomy[J]. European Journal of Operational Research, 2018, 270 (2): 401-408. doi: 10.1016/j.ejor.2017.11.061
    [3]
    WANG Ping, MILESKI J, ZENG Qing-cheng. Toward a taxonomy of container terminals' practices and performance: a contingency and configuration study[J]. Transportation Research Part A: Policy and Practice, 2019, 121: 92-107. doi: 10.1016/j.tra.2019.01.005
    [4]
    刘兵兵, 孙李波, 余玉刚. 仓储、物流与供应链管理研究新进展[J]. 中国科学技术大学学报, 2017, 47 (2): 176-187. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD201702008.htm

    LIU Bing-bing, SUN Li-bo, YU Yu-gang. Recent advances on researches of warehousing, logistics and supply chain management[J]. Journal of University of Science and Technology of China, 2017, 47 (2): 176-187. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD201702008.htm
    [5]
    王帆, 黄锦佳, 刘作仪. 港口管理与运营: 新兴研究热点及其进展[J]. 管理科学学报, 2017, 20 (5): 111-126. doi: 10.3969/j.issn.1007-9807.2017.05.009

    WANG Fan, HUANG Jin-jia, LIU Zuo-yi. Port management and operations: emerging research topics and progress[J]. Journal of Management Sciences in China, 2017, 20 (5): 111-126. (in Chinese). doi: 10.3969/j.issn.1007-9807.2017.05.009
    [6]
    LEHNFELD J, KNUST S. Loading, unloading and premarshalling of stacks in storage areas: survey and classification[J]. European Journal of Operational Research, 2014, 239 (2): 297-312. doi: 10.1016/j.ejor.2014.03.011
    [7]
    BIERWIRTH C, MEISEL F. A follow-up survey of berth allocation and quay crane scheduling problems in container terminals[J]. European Journal of Operational Research, 2015, 244 (3): 675-689. doi: 10.1016/j.ejor.2014.12.030
    [8]
    CARLO H J, VIS I F A, ROODBERGEN K J. Storage yard operations in container terminals: literature overview, trends, and research directions[J]. European Journal of Operational Research, 2014, 235 (2): 412-430. doi: 10.1016/j.ejor.2013.10.054
    [9]
    CARLO H J, VIS I F A, ROODBERGEN K J. Transport operations in container terminals: literature overview, trends, research directions and classification scheme[J]. European Journal of Operational Research, 2014, 236 (1): 1-13. doi: 10.1016/j.ejor.2013.11.023
    [10]
    陈江涛, 吕建秋. 基于知识图谱的运筹学发展现状及趋势研究[J]. 运筹与管理, 2019, 28 (1): 194-199. https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201901024.htm

    CHEN Jiang-tao, LYU Jian-qiu. Research on the present situation and tendency of operational research based on knowledge map[J]. Operations Research and Management Science, 2019, 28 (1): 194-199. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201901024.htm
    [11]
    ZHANG Zi-zhen, LEE Chung-yee. Multiobjective approaches for the ship stowage planning problem considering ship stability and container rehandles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46 (10): 1374-1389. doi: 10.1109/TSMC.2015.2504104
    [12]
    URSAVAS E, ZHU S X. Optimal policies for the berth allocation problem under stochastic nature[J]. European Journal of Operational Research, 2016, 255 (2): 380-387. doi: 10.1016/j.ejor.2016.04.029
    [13]
    LIU Ding, GE Ying-en. Modeling assignment of quay cranes using queueing theory for minimizing CO2 emission at a container terminal[J]. Transportation Research Part D: Transport and Environment, 2018, 61: 140-151. doi: 10.1016/j.trd.2017.06.006
    [14]
    CHEN Jiang-hang, BIERLAIRE M. The study of the unidirectional quay crane scheduling problem: complexity and risk-aversion[J]. European Journal of Operational Research, 2017, 260 (2): 613-624. doi: 10.1016/j.ejor.2017.01.007
    [15]
    梁承姬, 严亚平, 李玲君. 双40英尺岸桥的集卡调度问题研究[J]. 铁道科学与工程学报, 2018, 15 (2): 522-529. doi: 10.3969/j.issn.1672-7029.2018.02.033

    LIANG Cheng-ji, YAN Ya-ping, LI Ling-jun. Research of vehicle scheduling for dual 40' quay crane[J]. Journal of Railway Science and Engineering, 2018, 15 (2): 522-529. (in Chinese). doi: 10.3969/j.issn.1672-7029.2018.02.033
    [16]
    赵金楼, 黄金虎, 刘馨, 等. 考虑燃料成本的集装箱码头集卡路径优化[J]. 哈尔滨工程大学学报, 2017, 38 (12): 1985-1990. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201712025.htm

    ZHAO Jin-lou, HUANG Jin-hu, LIU Xin, et al. Optimization for routing yard trailers in container terminals by considering fuel cost[J]. Journal of Harbin Engineering University, 2017, 38 (12): 1985-1990. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201712025.htm
    [17]
    邵乾虔, 徐婷婷, 杨惠云, 等. 集卡分批到达模式下的进口箱场桥作业调度优化[J]. 控制与决策, 2016, 31 (9): 1654-1662. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201609018.htm

    SHAO Qian-qian, XU Ting-ting, YANG Hui-yun, et al. Scheduling optimization of yard crane for import containers based on truck batch arrival pattern[J]. Control and Decision, 2016, 31 (9): 1654-1662. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201609018.htm
    [18]
    ZHEN Lu, XU Zhou, WANG Kai, et al. Multi-period yard template planning in container terminals[J]. Transportation Research Part B: Methodological, 2016, 93: 700-719. doi: 10.1016/j.trb.2015.12.006
    [19]
    DA SILVA M D M, ERDOAN G, BATTARRA M, et al. The block retrieval problem[J]. European Journal of Operational Research, 2018, 265 (3): 931-950. doi: 10.1016/j.ejor.2017.08.048
    [20]
    DA SILVA M D M, TOULOUSE S, CALVO R W. A new effective unified model for solving the pre-marshalling and block relocation problems[J]. European Journal of Operational Research, 2018, 271 (1): 40-56. doi: 10.1016/j.ejor.2018.05.004
    [21]
    TAO Yi, LEE Chung-yee. Joint planning of berth and yard allocation in transshipment terminals using multi-cluster stacking strategy[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 83: 34-50. doi: 10.1016/j.tre.2015.08.005
    [22]
    LIN Dung-ying, LEE Yen-ju, LEE Yu-sin. The container retrieval problem with respect to relocation[J]. Transportation Research Part C: Emerging Technologies, 2015, 52: 132-143. doi: 10.1016/j.trc.2015.01.024
    [23]
    HU Zhi-hua. Heuristics for solving continuous berth allocation problem considering periodic balancing utilization of cranes[J]. Computers and Industrial Engineering, 2015, 85: 216-226. doi: 10.1016/j.cie.2015.03.017
    [24]
    JI Ming-jun, GUO Wen-wen, ZHU Hui-ling, et al. Optimization of loading sequence and rehandling strategy for multi-quay crane operations in container terminals[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 80: 1-19. doi: 10.1016/j.tre.2015.05.004
    [25]
    NIU Ben, XIE Ting, TAN Li-jing, et al. Swarm intelligence algorithms for yard truck scheduling and storage allocation problems[J]. Neurocomputing, 2016, 188 (5): 284-293.
    [26]
    TAN Cai-mao, HE Jun-liang, WANG Yu. Storage yard management based on flexible yard template in container terminal[J]. Advanced Engineering Informatics, 2017, 34: 101-113. doi: 10.1016/j.aei.2017.10.003
    [27]
    GALLE V, BARNHART C, JAILLET P. Yard crane scheduling for container storage, retrieval, and relocation[J]. European Journal of Operational Research, 2018, 271 (1): 288-316.
    [28]
    IRIS Ç, LAM J S L. Recoverable robustness in weekly berth and quay crane planning[J]. Transportation Research Part B: Methodological, 2019, 122: 365-389. doi: 10.1016/j.trb.2019.02.013
    [29]
    VAHDANI B, MANSOUR F, SOLTANI M, et al. Bi-objective optimization for integrating quay crane and internal truck assignment with challenges of trucks sharing[J]. Knowledge-Based Systems, 2019, 163: 275-293.
    [30]
    韩笑乐, 鞠留红, 钱丽娜, 等. 集装箱进出口码头泊位-堆场协同分配的动态决策[J]. 上海交通大学学报, 2019, 53 (1): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201901011.htm

    HAN Xiao-le, JU Liu-hong, QIAN Li-na, et al. Dynamic decision making for the integrated allocation of berth and yard resource at import/export container terminals[J]. Journal of Shanghai Jiaotong University, 2019, 53 (1): 69-76. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201901011.htm
    [31]
    曾庆成, 陈子根, 黄玲. 集装箱码头同贝同步装卸调度的多阶段混合流水线模型[J]. 上海交通大学学报, 2015, 49 (4): 499-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201504015.htm

    ZENG Qing-cheng, CHEN Zi-gen, HUANG Ling. Multi-stage hybrid flow shop model for quay crane dual cycling in container terminals[J]. Journal of Shanghai Jiaotong University, 2015, 49 (4): 499-505. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201504015.htm
    [32]
    秦天保, 葛浩, 沙梅. 约束规划求解集装箱装卸系统集成调度问题[J]. 系统工程理论与实践, 2015, 35 (8): 2127-2136. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201508023.htm

    QIAN Tian-bao, GE Hao, SHA Mei. Constraint programming for the integrated scheduling problem of container handling systems in container terminals[J]. Systems Engineering—Theory and Practice, 2015, 35 (8): 2127-2136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201508023.htm
    [33]
    常祎妹, 朱晓宁, 王力. 集装箱码头集成调度研究综述[J]. 交通运输工程学报, 2019, 19 (1): 136-146. http://transport.chd.edu.cn/article/id/201901014

    CHANG Yi-mei, ZHU Xiao-ning, WANG Li. Review on integrated scheduling of container terminals[J]. Journal of Traffic and Transportation Engineering, 2019, 19 (1): 136-146. (in Chinese). http://transport.chd.edu.cn/article/id/201901014
    [34]
    LÓPEZ-BERMÚDEZ B, FREIRE-SEOANE M J, GONZÁLEZLAXE F. Efficiency and productivity of container terminals in Brazilian ports (2008-2017)[J]. Utilities Policy, 2019, 56: 82-91.
    [35]
    FENG Hong-xiang, GRIFOLL M, ZHENG Peng-jun. From a feeder port to a hub port: the evolution pathways, dynamics and perspectives of Ningbo-Zhoushan Port (China)[J]. Transport Policy, 2019, 76: 21-35.
    [36]
    鲁渤, 汪寿阳. 中韩集装箱码头运营效率的比较研究[J]. 管理评论, 2017, 29 (5): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWGD201705016.htm

    LU Bo, WANG Shou-yang. A comparative study of the container terminal operating efficiency between China and South Korea[J]. Management Review, 2017, 29 (5): 175-182. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZWGD201705016.htm
    [37]
    LI Bin, LI Wen-feng. Modeling and simulation of container terminal logistics systems using Harvard architecture and agent-based computing[C]//IEEE. Proceedings of the 2010 Winter Simulation Conference. New York: IEEE, 2010: 3396-3410.
    [38]
    LI Bin. Container terminal logistics scheduling and decision-making within the conceptual framework of computational thinking[C]//IEEE. 54th IEEE Conference on Decision and Control. New York: IEEE, 2015: 330-337.
    [39]
    李斌. 面向计算思维的集装箱码头装卸作业调度[J]. 交通运输系统工程与信息, 2016, 16 (3): 161-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201603024.htm

    LI Bin. Container terminal loading and unloading task scheduling based on computational thinking[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16 (3): 161-167. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201603024.htm
    [40]
    李斌. 基于计算物流的集装箱码头集疏运虚拟机体系结构及其仿真分析[J]. 计算机集成制造系统, 2018, 24 (1): 245-263. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201801024.htm

    LI Bin. Collection and distribution virtual machines architecture of container terminal based on computational logistics and its simulation analysis[J]. Computer Integrated Manufacturing Systems, 2018, 24 (1): 245-263. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201801024.htm
    [41]
    LI Bin, WAN Yun-fei, SUN Bing. Container terminal logistics computation performance evaluation with great principles of computing and case study[C]∥IEEE. Proceedings of the 2018 Chinese Automation Congress (CAC 2018). New York: IEEE, 2018: 934-939.
    [42]
    袁良, 张云泉. 基于横向局部性的多核计算模型[J]. 计算机科学, 2012, 39 (7): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201207001.htm

    YUAN Liang, ZHANG Yun-quan. Multi-core parallel computational model based on horizontal locality[J]. Computer Science, 2012, 39 (7): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201207001.htm
    [43]
    王欢, 都志辉. 并行计算模型对比分析[J]. 计算机科学, 2005, 32 (12): 142-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA200512037.htm

    WANG Huan, DU Zhi-hui. Contrastive analysis of parallel computation model[J]. Computer Science, 2005, 32 (12): 142-145. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA200512037.htm
    [44]
    李斌. 基于哈佛体系结构的集装箱码头物流系统建模仿真研究[D]. 武汉: 武汉理工大学, 2009.

    LI Bin. Modeling and simulation of container terminal logistics system based on Harvard architecture[D]. Wuhan: Wuhan University of Technology, 2009. (in Chinese).
    [45]
    CARLO H J, VIS I F A, ROODBERGEN K J. Seaside operations in container terminals: literature overview, trends, and research directions[J]. Flexible Services and Manufacturing Journal, 2015, 27 (2/3): 224-262.
    [46]
    KAVESHGAR N, HUYNH N. Integrated quay crane and yard truck scheduling for unloading inbound containers[J]. International Journal of Production Economics, 2015, 159: 168-177.
    [47]
    HWANG F J, LIN B M T. Two-stage flexible flow shop scheduling subject to fixed job sequences[J]. Journal of the Operational Research Society, 2016, 67 (3): 506-515.
    [48]
    张煜, 容芷君, 马杰. 含批处理机和多工件族的混合流水车间问题[J]. 计算机集成制造系统, 2014, 20 (2): 407-413. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201402022.htm

    ZHANG Yu, RONG Zhi-jun, MA Jie. Hybrid flow shop problem with batching machines and multi-jobs families[J]. Computer Integrated Manufacturing Systems, 2014, 20 (2): 407-413. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201402022.htm
    [49]
    杨宜佳, 朱晓宁, 闫柏丞, 等. 考虑能耗的铁水联运集装箱装卸设备协同调度[J]. 交通运输系统工程与信息, 2018, 18 (6): 215-221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201806030.htm

    YANG Yi-jia, ZHU Xiao-ning, YAN Bai-cheng, et al. Integrated scheduling of rail-water containers handling operations in intermodal terminals considering energy-efficiency[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (6): 215-221. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201806030.htm
    [50]
    李斌. 面向PID控制和仿真优化的集装箱码头作业调度[J]. 计算机集成制造系统, 2016, 22 (3): 833-845. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201603028.htm

    LI Bin. Container terminal task scheduling oriented to PID control and simulation optimization[J]. Computer Integrated Manufacturing Systems, 2016, 22 (3): 833-845. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201603028.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (863) PDF downloads(328) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return