LIU Yu-xuan, WU Sheng-chuan, LI Cun-hai, KANG Guo-zheng, LIANG Shu-lin. Fatigue performance and life assessment of railway axle with inside axle box[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 100-108. doi: 10.19818/j.cnki.1671-1637.2019.03.011
Citation: LIU Yu-xuan, WU Sheng-chuan, LI Cun-hai, KANG Guo-zheng, LIANG Shu-lin. Fatigue performance and life assessment of railway axle with inside axle box[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 100-108. doi: 10.19818/j.cnki.1671-1637.2019.03.011

Fatigue performance and life assessment of railway axle with inside axle box

doi: 10.19818/j.cnki.1671-1637.2019.03.011
More Information
  • Author Bio:

    LIU Yu-xuan(1993-), male, graduate student, lyx930520@163.com

    WU Sheng-chuan(1979-), male, professor, PhD, wusc@swjtu.edu.cn

  • Received Date: 2018-12-26
  • Publish Date: 2019-06-25
  • Low cycle fatigue test, high cycle fatigue test under rotating bending and crack growth rate test of EA4 T alloy steel were carried out. Considering load type, surface quality, dimension coefficient and other factors, the fatigue limit of standard small specimen was modified to predict the fatigue performance of full-scale axle. The finite element model of railway axle with inside axle box (RAIB) was established. The difference of critical safety position between RAIB and traditional railway axle with outside axle box (RAOB) was analyzed. Based on the safe life design theory, combined with the modified linear Miner fatigue cumulative damage criterion and load spectrum, the fatigue strength and service performance of RAIB were studied. The crack growth rate curves were fitted by using the Paris formula, NASGRO equation and LAPS model, respectively. Based on the damage tolerance design method, the crack propagation lifes of RAIB and RAOB were estimated. Analysis result shows that the fatigue limits of standard small specimens is obviously higher than that of full-scale axles, and the mean values of fatigue limit are 369 and 286 MPa, respectively. Compared with the traditional RAOB, the critical safety position of RAIB has been transferred from unload groove to axle center due to the change of loading position. The total fatigue life of RAIB is 2.5×1012 km, which meets the design requirements of 30-year service life. However, there are inevitably defects on the surface of the axle during transportation or service, and serious stress concentration exists at the defect, which provides convenient conditions for the initiation and propagation of cracks and greatly reduces the fatigue life of axle. When the crack depth in critical safety position of axle extends to 5 mm, the residual lives of RAIB and RAOB are only 3.2×105 and 2.0×105 km, respectively, and the non-destructive inspection interval should be reasonably formulated according to the accuracy of non-destructive test to ensure the safe service of axle.

     

  • loading
  • [1]
    李炳华, 杜欣. 高速机车车辆车轴的疲劳设计[J]. 铁道机车与动车, 2000 (1): 14-20. doi: 10.3969/j.issn.1003-1820.2000.01.005

    LI Bing-hua, DU Xin. Fatigue design of wheel axles of locomotives and rolling stocks with high speed[J]. Railway Locomotive and Motor Car, 2000 (1): 14-20. (in Chinese). doi: 10.3969/j.issn.1003-1820.2000.01.005
    [2]
    ZERBST U, BERETTA S, KÖHLER G, et al. Safe life and damage tolerance aspects of railway axles—a review[J]. Engineering Fracture Mechanics, 2013, 98 (1): 214-271.
    [3]
    SMITH R A, HILLMANSEN S. A brief historical overview of the fatigue of railway axles[J]. Journal of Rail and Rapid Transit, 2004, 218 (4): 267-277. doi: 10.1243/0954409043125932
    [4]
    MAKINO T, KATO T, HIRAKAWA K. Review of the fatigue damage tolerance of high-speed railway axles in Japan[J]. Engineering Fracture Mechanics, 2011, 78: 810-825. doi: 10.1016/j.engfracmech.2009.12.013
    [5]
    WU Sheng-chuan, ZHANG Si-qi, XU Zhong-wei, et al. Cyclic plastic strain based damage tolerance for railway axles in China[J]. International Journal of Fatigue, 2016, 93: 64-70. doi: 10.1016/j.ijfatigue.2016.08.006
    [6]
    GÄNSER H P, MAIERHOFER J, TICHY R, et al. Damage tolerance of railway axles—the issue of transferability revisited[J]. International Journal of Fatigue, 2016, 86: 52-57. doi: 10.1016/j.ijfatigue.2015.07.019
    [7]
    吴毅, 刘鑫贵, 项彬, 等. 重载铁路货车用LZ45CrV车轴钢综合性能的试验研究[J]. 中国铁道科学, 2015, 36 (2): 68-72. doi: 10.3969/j.issn.1001-4632.2015.02.10

    WU Yi, LIU Xin-gui, XIANG Bin, et al. Experimental study on the comprehensive performance of LZ45CrV axle steel for heavy haul freight car[J]. China Railway Science, 2015, 36 (2): 68-72. (in Chinese). doi: 10.3969/j.issn.1001-4632.2015.02.10
    [8]
    朱静, 顾家琳, 周惠华, 等. 高速列车空心车轴国产化的选材和试制[J]. 中国铁道科学, 2015, 36 (2): 60-67. doi: 10.3969/j.issn.1001-4632.2015.02.09

    ZHU Jing, GU Jia-lin, ZHOU Hui-hua, et al. Material selection and trial manufacture for localization of hollow axle for high speed train[J]. China Railway Science, 2015, 36 (2): 60-67. (in Chinese). doi: 10.3969/j.issn.1001-4632.2015.02.09
    [9]
    黄国, 黄海明, 王超, 等. 45#车轴钢疲劳性能试验研究[J]. 中国铁道科学, 2013, 34 (4): 71-76. doi: 10.3969/j.issn.1001-4632.2013.04.12

    HUANG Guo, HUANG Hai-ming, WANG Chao, et al. Experimental study on the fatigue properties of 45# axle steel[J]. China Railway Science, 2013, 34 (4): 71-76. (in Chinese). doi: 10.3969/j.issn.1001-4632.2013.04.12
    [10]
    李存海, 吴圣川, 刘宇轩. 样本信息聚集原理改进及其在铁路车辆结构疲劳评定中的应用[J]. 机械工程学报, 2019, 55 (4): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904006.htm

    LI Cui-hai, WU Sheng-chuan, LIU Yu-xuan. Improved sample polymerization principle and the applications onto fatigue assessment of railway vehicle structures[J]. Journal of Mechanical Engineering, 2019, 55 (4): 42-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904006.htm
    [11]
    WU Sheng-chuan, XU Zhong-wei, KANG Guo-zheng, et al. Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages[J]. International Journal of Fatigue, 2018, 117: 90-100. doi: 10.1016/j.ijfatigue.2018.08.011
    [12]
    宋仲明, 黄晋, 冯健, 等. 铁路车辆用LZ50钢车轴裂纹的形成机理[J]. 理化检验-物理分册, 2015, 51 (5): 315-319. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW201505005.htm

    SONG Zhong-ming, HUANG Jin, FENG Jian, et al. Formation mechanisms of cracks in LZ50 steel axles for railway vehicles[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2015, 51 (5): 315-319. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LHJW201505005.htm
    [13]
    徐忠伟, 吴圣川, 段浩, 等. 考虑压装和实测动应力的含缺陷空心车轴剩余寿命评估[J]. 中国科学: 技术科学, 2017, 47 (6): 656-665. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201706008.htm

    XU Zhong-wei, WU Sheng-chuan, DUAN Hao, et al. Fatigue crack growth life prediction of railway hollow axis with flaws under press fitting and measured dynamic stress spectrum[J]. Scientia Sinica Technologica, 2017, 47 (6): 656-665. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201706008.htm
    [14]
    王玉光, 吴圣川, 李忠文, 等一种基于低周疲劳特性的含缺陷车轴剩余寿命预测模型[J]. 铁道学报, 2018, 40 (11): 27-32. doi: 10.3969/j.issn.1001-8360.2018.11.004

    WANG Yu-guang, WU Sheng-chuan, LI Zhong-wen, et al. A low cycle fatigue characteristics based residual life prediction model for railway axles with flaws[J]. Journal of the China Railway Society, 2018, 40 (11): 27-32. (in Chinese). doi: 10.3969/j.issn.1001-8360.2018.11.004
    [15]
    杨冰, 廖贞, 马佰全, 等. 两种加载频率下LZ50车轴钢疲劳短裂纹行为对比[J]. 交通运输工程学报, 2017, 17 (6): 46-55. doi: 10.3969/j.issn.1671-1637.2017.06.006

    YANG Bing, LIAO Zhen, MA Bai-quan, et al. Comparison of short fatigue crack behaviors for LZ50 axle steel under two loading frequencies[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (6): 46-55. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.06.006
    [16]
    金新灿, 张晓斌, 周康. 高速列车轮轴载荷谱编制及疲劳强度分析[J]. 北京交通大学学报, 2018, 42 (4): 113-120. doi: 10.3969/j.issn.1672-8106.2018.04.012

    JIN Xin-can, ZHANG Xiao-bin, ZHOU Kang. Study on load spectrum compilation and fatigue strength of high-speed train wheel axle[J]. Journal of Beijing Jiaotong University, 2018, 42 (4): 113-120. (in Chinese). doi: 10.3969/j.issn.1672-8106.2018.04.012
    [17]
    POKORN HUTAHL Residual fatigue lifetime estimation of railway axles for various loading spectra[J]. Theoretical and Applied Fracture Mechanics, 2016, 82: 25-32.
    [18]
    邓铁松, 吴磊, 凌亮, 等. 轴箱内置与外置直线电机地铁车辆曲线通过性能对比[J]. 计算机辅助工程, 2015, 24 (1): 12-17, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm

    DENG Tie-song, WU Lei, LING Liang, et al. Comparison of curving performance of linear induction motor metro vehicles with inside and outside axle boxes[J]. Computer Aided Engineering, 2015, 24 (1): 12-17, 21. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm
    [19]
    翟婉明, 金学松, 赵永翔. 高速铁路工程中若干典型力学问题[J]. 力学进展, 2010, 40 (4): 358-374. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004003.htm

    ZHAI Wan-ming, JIN Xue-song, ZHAO Yong-xiang. Some typical mechanics peoblems in high-speed railway engineering[J]. Advances in Mechanics, 2010, 40 (4): 358-374. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004003.htm
    [20]
    LUKE M, VARFOLOMEEV I, LÜTKEPOHL K, et al. Fatigue crack growth in railway axles: assessment concept and validation tests[J]. Engineering Fracture Mechanics, 2011, 78 (5): 714-730. doi: 10.1016/j.engfracmech.2010.11.024
    [21]
    WU Sheng-chuan, XU Zhong-wei, YU Cheng, et al. A physically short fatigue crack growth approach based on low cycle fatigue properties[J]. International Journal of Fatigue, 2017, 103 (6): 185-195.
    [22]
    MADIA M, BERETTA S, ZERBST U. An investigation on the influence of rotary bending and press fitting on stress intensity factors and fatigue crack growth in railway axles[J]. Engineering Fracture Mechanics, 2008, 75 (8): 1906-1920. doi: 10.1016/j.engfracmech.2007.08.015
    [23]
    WATSON A S, TIMMIS K. A method of estimating railway axle stress spectra[J]. Engineering Fracture Mechanics, 2011, 78 (5): 836-847.
    [24]
    TRAUPE M, JENNE S, LÜTKEPOHL K, et al. Experimental validation of inspection intervals for railway axles accompanying the engineering process[J]. International Journal of Fatigue, 2016, 86: 44-51. doi: 10.1016/j.ijfatigue.2015.09.020
    [25]
    WU Sheng-chuan, XU Zhong-wei, LIU Yu-xuan, et al. On the residual life assessment of high-speed railway axles due to induction hardening[J]. International Journal of Rail Transportation, 2018, 6 (4): 218-232. doi: 10.1080/23248378.2018.1427008
    [26]
    WU Sheng-chuan, LIU Yu-xuan, LI Cun-hai, et al. On the fatigue performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2018, 197: 176-191. doi: 10.1016/j.engfracmech.2018.04.046
    [27]
    BERETTA S, REGAZZI D. Probabilistic fatigue assessment for railway axles and derivation of a simple format for damage calculations[J]. International Journal of Fatigue, 2016, 86: 13-23.
    [28]
    周素霞. 高速列车空心车轴损伤容限理论与方法研究[D]. 北京: 北京交通大学, 2009.

    ZHOU Su-xia. Theory and method research on damage tolerance of the hollow axles of high speed trains[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese).
    [29]
    MAIERHOFER J, PIPPAN R, GÄNSER H P. Modified NASGRO equation for physically short cracks[J]. International Journal of Fatigue, 2014, 59: 200-207. doi: 10.1016/j.ijfatigue.2013.08.019
    [30]
    周素霞, 李福胜, 谢基龙, 等. 基于损伤容限的动车组车轴实测载荷谱等效应力评价[J]. 机械工程学报, 2015, 51 (8): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508019.htm

    ZHOU Su-xia, LI Fu-sheng, XIE Ji-long, et al. Equivalent stress evaluation of the load spectrum measured on the EMU axle based on damage tolerance[J]. Journal of Mechanical Engineering, 2015, 51 (8): 131-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508019.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (804) PDF downloads(460) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return