LI Xiao-chi, XU Zhi-gang, CHEN Ting, ZHAO Xiang-mo. Heterogeneous vehicular network selection method considering network congestion and system fairness[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 178-190. doi: 10.19818/j.cnki.1671-1637.2019.03.018
Citation: LI Xiao-chi, XU Zhi-gang, CHEN Ting, ZHAO Xiang-mo. Heterogeneous vehicular network selection method considering network congestion and system fairness[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 178-190. doi: 10.19818/j.cnki.1671-1637.2019.03.018

Heterogeneous vehicular network selection method considering network congestion and system fairness

doi: 10.19818/j.cnki.1671-1637.2019.03.018
More Information
  • Author Bio:

    LI Xiao-chi(1991-), male, doctoral student, xcli@chd.edu.cn

    ZHAO Xiang-mo(1966-), male, professor, PhD, xmzhao@chd.edu.cn

  • Received Date: 2018-12-16
  • Publish Date: 2019-06-25
  • The bounded rationality characteristic of evolutionary game was used to implement the network selection, and the network resource of heterogeneous vehicular network system was evenly distributed. The fairness of the system was guaranteed by optimizing evolutionary game with two-layer game while some of the vehicles can transmit message in extreme congestion. The network simulation scene combined with dedicated short-range communication (DSRC), long-term evolution, and wireless local area network was designed, and the traditional method based on multiple criteria decision making, the network selection method based on evolutionary game, and the network selection method based on two-layer game were compared. Simulation result shows that the large scale ping-pong effects of dynamic network environment in heterogeneous vehicular network switching was firstly solved by using the heterogeneous vehicular network selection method based on evolutionary game and two-layer game. The two-layer game can suppress congestion and provide system fairness. The network selection method based on two-layer game can drive the heterogeneous network system to achieve the stability of network system state in 2-3 switching cycles. In the preset dynamic network evaluation condition and the general scene with 80 terminals, the terminal average network evaluation index of two-layer game is 19.5% higher than that of evolutionary game, and it provides reliable services for three kinds of network cooperation. In the extreme congestion scenario with 190 terminals, the terminals are reasonably distributed and share the DSRC network resources. The terminal average network evaluation index of two-layer game is 10.3% higher than that of evolutionary game, and the evaluation index of two-layer game DSRC network is 2.18 times of evolutionary game. Therefore, the basic safety messages broadcast, system fairness and basic connected vehicle service can be ensured.

     

  • loading
  • [1]
    赵祥模, 惠飞, 史昕, 等. 泛在交通信息服务系统的概念、架构与关键技术[J]. 交通运输工程学报, 2014, 14 (4): 105-115. http://transport.chd.edu.cn/article/id/201404013

    ZHAO Xiang-mo, HUI Fei, SHI Xin, et al. Concept, architecture and challenging technologies of ubiquitous traffic information service system[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (4): 105-115. (in Chinese). http://transport.chd.edu.cn/article/id/201404013
    [2]
    KENNEY J B. Dedicated short-range communications (DSRC) standards in the United States[J]. Proceedings of the IEEE, 2011, 99 (7): 1162-1182. doi: 10.1109/JPROC.2011.2132790
    [3]
    XU Zhi-gang, LI Xiao-chi, ZHAO Xiang-mo, et al. DSRC versus 4G-LTE for connected vehicle applications: a study on field experiments of vehicular communication performance[J]. Journal of Advanced Transportation, 2017, 2017: 1-10.
    [4]
    SU K C, WU H M, CHANG W L, et al. Vehicle-to-vehicle communication system through Wi-Fi network using android smartphone[C]//IEEE. 2012 International Conference on Connected Vehicles and Expo (ICCVE). New York: IEEE, 2013: 191-196.
    [5]
    HOSSAIN E, CHOW G, LEUNG V C M, et al. Vehicular telematics over heterogeneous wireless networks: a survey[J]. Computer Communications, 2010, 33 (7): 775-793. doi: 10.1016/j.comcom.2009.12.010
    [6]
    YLIANTTILA M, PANDE M, MÄKELÄ J, et al. Optimization scheme for mobile users performing vertical handoffs between IEEE 802.11 and GPRS/EDGE networks[C]//IEEE. IEEE Global Telecommunications Conference. New York: IEEE, 2001: 3439-3443.
    [7]
    BUDDHIKOT M, CHANDRANMENON G, HAN S, et al. Integration of 802.11 and third-generation wireless data networks[C]//IEEE. The Conference on Computer Communications—22nd Annual Joint Conference of the IEEE Computer and Communications Societies. New York: IEEE, 2003: 503-512.
    [8]
    HAIDER A, GONDAL I, KAMRUZZAMAN J. Dynamic dwell timer for hybrid vertical handover in 4G coupled networks[C]//IEEE. 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring). New York: IEEE, 2011: 1-5.
    [9]
    NIYATO D, HOSSAIN E. Dynamics of network selection in heterogeneous wireless networks: an evolutionary game approach[J]. IEEE Transactions on Vehicular Technology, 2009, 58 (4): 2008-2017. doi: 10.1109/TVT.2008.2004588
    [10]
    MA Dong, MA Mao-de. A QoS-based vertical handoff scheme for interworking of WLAN and WiMAX[C]//IEEE. GLOBECOM—IEEE Global Telecommunications Conference. New York: IEEE, 2009: 1-6.
    [11]
    SEPULCRE M, GOZALVEZ J, ALTINTAS O, et al. Context-aware heterogeneous V2I communications[C]//IEEE. 7th International Workshop on Reliable Networks Design and Modeling. New York: IEEE, 2015: 295-300.
    [12]
    TIAN Da-xin, ZHOU Jian-shan, WANG Yun-peng, et al. A dynamic and self-adaptive network selection method for multimode communications in heterogeneous vehicular telematics[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (6): 3033-3049. doi: 10.1109/TITS.2015.2422144
    [13]
    MARQUEZ-BARJA J M, AHMADI H, TORNELL S M, et al. Breaking the vehicular wireless communications barriers: vertical handover techniques for heterogeneous networks[J]. IEEE Transactions on Vehicular Technology, 2015, 64 (12): 5878-5890. doi: 10.1109/TVT.2014.2386911
    [14]
    WANG Shang-guang, FAN Cun-qun, HSU Ching-hsien, et al. A vertical handoff method via self-selection decision tree for internet of vehicles[J]. IEEE Systems Journal, 2016, 10 (3): 1183-1192. doi: 10.1109/JSYST.2014.2306210
    [15]
    AWAD A, MOHAMED A, CHIASSERINI C F. Dynamic network selection in heterogeneous wireless networks: a user-centric scheme for improved delivery[J]. IEEE Consumer Electronics Magazine, 2017, 6 (1): 53-60. doi: 10.1109/MCE.2016.2614419
    [16]
    KIM S. Fog radio access network system control scheme based on the embedded game model[J]. Eurasip Journal on Wireless Communications and Networking, 2017, 2017 (1): 1-5. doi: 10.1186/s13638-016-0795-x
    [17]
    AGRAWAL S, TYAGI N, MISRA A K. Seamless VANET connectivity through heterogeneous wireless network on rural highways[C]//ACM. 2nd International Conference on Information and Communication Technology for Competitive Strategies. New York: ACM, 2016: 1-5.
    [18]
    DEY K C, RAYAMAJHI A, CHOWDHURY M, et al. Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network—performance evaluation[J]. Transportation Research Part C: Emerging Technologies, 2016, 68: 168-184. doi: 10.1016/j.trc.2016.03.008
    [19]
    SYFULLAH M, LIMJ M Y. Data broadcasting on Cloud-VANET for IEEE 802.11p and LTE hybrid VANET architectures[C]//IEEE. 3rd IEEE International Conference on Computational Intelligence and Communication Technology. New York: IEEE, 2017: 1-6.
    [20]
    CHARITOS M, KALIVAS G. MIMO HetNet IEEE 802.11p-LTE deployment in a vehicular urban environment[J]. Vehicular Communications, 2017, 9: 222-232. doi: 10.1016/j.vehcom.2016.12.004
    [21]
    SALVO P, TURCANU I, CUOMO F, et al. Heterogeneous cellular and DSRC networking for floating car data collection in urban areas[J]. Vehicular Communications, 2017, 8: 21-34.
    [22]
    CHANG C J, TSAI T L, CHEN Y H. Utility and game-theory based network selection scheme in heterogeneous wireless networks[C]//IEEE. 2009 IEEE Wireless Communications and Networking Conference. New York: IEEE, 2009: 2846-2850.
    [23]
    ZHU Kun, NIYATO D, WANG Ping. Network selection in heterogeneous wireless networks: evolution with incomplete information[C]//IEEE. IEEE Wireless Communications and Networking Conference. New York: IEEE, 2010: 1-6.
    [24]
    PERVAIZ H, MEI Hai-bo, BIGHAM J, et al. Enhanced cooperation in heterogeneous wireless networks using coverage adjustment[C]//ACM. 6th International Wireless Communications and Mobile Computing Conference. New York: ACM, 2010: 241-245.
    [25]
    LIU Xing-wei, FANG Xu-ming, CHEN Xu, et al. A bidding model and cooperative game-based vertical handoff decision algorithm[J]. Journal of Network and Computer Applications, 2011, 34 (4): 1263-1271. doi: 10.1016/j.jnca.2011.01.012
    [26]
    LIU Bin, TIAN Hui, WANG Bin, et al. AHP and game theory based approach for network selection in heterogeneous wireless networks[C]//IEEE. 2014 IEEE 11th Consumer Communications and Networking Conference. New York: IEEE, 2014: 501-506.
    [27]
    CAMPOLO C, VINEL A, MOLINARO A, et al. Modeling broadcasting in IEEE 802.11p/WAVE vehicular networks[J]. IEEE Communications letters, 2011, 15 (2): 199-201.
    [28]
    VINEL A. 3GPP LTE versus IEEE 802.11p/WAVE: which technology is able to support cooperative vehicular safety applications?[J]. IEEE Wireless Communications Letters, 2012, 1 (2): 125-128.
    [29]
    BALDO N, REQUENA-ESTESO M, NÚÑEZ-MARTÍNEZ J, et al. Validation of the IEEE 802.11 MAC model in the ns3 simulator using the EXTREME testbed[C]//ICST. 3rd International ICST Conference on Simulation Tools and Techniques. Bratislava: ICST, 2010: 1-9.
    [30]
    HOFBAUER J, SIGMUND K. Evolutionary game dynamics[R]. Laxenburg: IIASA, 2003.
    [31]
    BAZZI A, MASINI B M, ZANELLA A, et al. On the performance of IEEE 802.11p and LTE-V2V for the cooperative awareness of connected vehicles[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (11): 10419-10432.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (619) PDF downloads(372) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return