Citation: | CHE Chang-chang, WANG Hua-wei, NI Xiao-mei, FU Qiang. Residual life prediction of aeroengine based on multi-scale permutation entropy and LSTM neural network[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 106-115. doi: 10.19818/j.cnki.1671-1637.2019.05.011 |
[1] |
马小骏, 任淑红, 左洪福, 等. 基于LS-SVM算法和性能可靠性的航空发动机在翼寿命预测方法[J]. 交通运输工程学报, 2015, 15(3): 92-100. doi: 10.3969/j.issn.1671-1637.2015.03.013
MA Xiao-jun, REN Shu-hong, ZUO Hong-fu, et al. Prediction method of aero-engine life on wing based on LS-SVM algorithm and performance reliability[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 92-100. (in Chinese). doi: 10.3969/j.issn.1671-1637.2015.03.013
|
[2] |
HUANG Ze-yi, XU Zheng-guo, KE Xiao-jie, et al. Remaining useful life prediction for an adaptive skew-Wiener process model[J]. Mechanical Systems and Signal Processing, 2017, 87: 294-306. doi: 10.1016/j.ymssp.2016.10.027
|
[3] |
HU Yao-gang, LI Hui, SHI Ping-ping, et al. A prediction method for the real-time remaining useful life of wind turbine bearings based on the Wiener process[J]. Renewable Energy, 2018, 127: 452-460. doi: 10.1016/j.renene.2018.04.033
|
[4] |
WANG Xing-jian, LIN Si-ru, WANG Shao-ping, et al. Remaining useful life prediction based on the Wiener process for an aviation axial piston pump[J]. Chinese Journal of Aeronautics, 2016, 29(3): 779-788. doi: 10.1016/j.cja.2015.12.020
|
[5] |
ZHANG Yu-jie, PENG Xi-yuan, PENG Yu, et al. Weighted bagging Gaussion process regression to predict remaining useful life of electro-mechanical actuator[C]∥IEEE. 2016 Prognostics and System Health Management Conference. New York: IEEE, 2016: 1-6.
|
[6] |
AYE S A, HEYNS P S. An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission[J]. Mechanical Systems and Signal Processing, 2017, 84: 485-498. doi: 10.1016/j.ymssp.2016.07.039
|
[7] |
KUMAR A, CHINNAM R B, TSENG F. An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools[J]. Computers and Industrial Engineering, 2019, 128: 1008-1014. doi: 10.1016/j.cie.2018.05.017
|
[8] |
CHEN Zhen, LI Ya-ping, XIA Tang-bin, et al. Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy[J]. Reliability Engineering and System Safety, 2019, 184: 123-136. doi: 10.1016/j.ress.2017.09.002
|
[9] |
RAI A, UPADHYAY S H. The use of MD-CUMSUM and NARX neural network for anticipating the remaining useful life of bearings[J]. Measurement, 2017, 111: 397-410. doi: 10.1016/j.measurement.2017.07.030
|
[10] |
LIU Zhen, CHENG Yu-hua, WANG Pan, et al. A method for remaining useful life prediction of crystal oscillators using the Bayesian approach and extreme learning machine under uncertainty[J]. Neurocomputing, 2018, 305: 27-38. doi: 10.1016/j.neucom.2018.04.043
|
[11] |
ALI J B, CHEBEL-MORELLO B, SAIDI L, et al. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network[J]. Mechanical Systems and Signal Processing, 2015, 56/57: 150-172. doi: 10.1016/j.ymssp.2014.10.014
|
[12] |
ZHAO Ze-qi, LIANG Bin, WANG Xue-qian, et al. Remaining useful life prediction of aircraft engine based on degradation pattern learning[J]. Reliability Engineering and System Safety, 2017, 164: 74-83. doi: 10.1016/j.ress.2017.02.007
|
[13] |
WU Jun, SU Yong-heng, CHENG Yi-wei, et al. Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system[J]. Applied Soft Computing, 2018, 68: 13-23. doi: 10.1016/j.asoc.2018.03.043
|
[14] |
REN Lei, SUN Ya-qiang, CUI Jin, et al. Bearing remaining useful life prediction based on deep autoencoder and deep neural networks[J]. Journal of Manufacturing Systems, 2018, 48: 71-77. doi: 10.1016/j.jmsy.2018.04.008
|
[15] |
GUO Liang, LI Nai-peng, JIA Feng, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240: 98-109. doi: 10.1016/j.neucom.2017.02.045
|
[16] |
ZHANG Jian-jing, WANG Peng, YAN Ru-qiang, et al. Long short-term memory for machine remaining life prediction[J]. Journal of Manufacturing Systems, 2018, 48: 78-86. doi: 10.1016/j.jmsy.2018.05.011
|
[17] |
WU Yi-ting, YUAN Mei, DONG Shao-peng, et al. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks[J]. Neurocomputing, 2018, 275: 167-179. doi: 10.1016/j.neucom.2017.05.063
|
[18] |
WEN Yu-xin, WU Jian-guo, DAS D, et al. Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity[J]. Reliability Engineering and System Safety, 2018, 176: 113-124. doi: 10.1016/j.ress.2018.04.005
|
[19] |
SON J, ZHANG Yi-lu, SANKAVARAM C, et al. RUL prediction for individual units based on condition monitoring signals with a change point[J]. IEEE Transactions on Reliability, 2015, 64(1): 182-196. doi: 10.1109/TR.2014.2355531
|
[20] |
WANG Ping-ping, TANG Yin-cai, BAE S J, et al. Bayesian analysis of two-phase degradation data based on change-point Wiener process[J]. Reliability Engineering and System Safety, 2018, 170: 244-256. doi: 10.1016/j.ress.2017.09.027
|
[21] |
LIU Lian-sheng, WANG Shao-jun, LIU Da-tong, et al. Quantitative selection of sensor data based on improved permutation entropy for system remaining useful life prediction[J]. Microelectronics Reliability, 2017, 75: 264-270. doi: 10.1016/j.microrel.2017.03.008
|
[22] |
ZHANG Xiao-yuan, LIANG Yi-tao, ZHOU Jian-zhong, et al. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM[J]. Measurement, 2015, 69: 164-179. doi: 10.1016/j.measurement.2015.03.017
|
[23] |
LI Yong-bo, XU Min-qiang, WEI Yu, et al. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree[J]. Measurement, 2016, 77: 80-94. doi: 10.1016/j.measurement.2015.08.034
|
[24] |
姚德臣, 杨建伟, 程晓卿, 等. 基于多尺度本征模态排列熵SA-SVM的轴承故障诊断研究[J]. 机械工程学报, 2018, 54(9): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201809021.htm
YAO De-chen, YANG Jian-wei, CHENG Xiao-qing, et al. Railway rolling bearing fault diagnosis based on multi-scale IMF permutation entropy and SA-SVM classifier[J]. Journal of Mechanical Engineering, 2018, 54(9): 168-176. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201809021.htm
|
[25] |
AZAMI H, ESCUDERO J. Improved multiscale permutation entropy for biomedical signal analysis: interpretation and application to electroencephalogram recordings[J]. Biomedical Signal Processing and Control, 2016, 23: 28-41. doi: 10.1016/j.bspc.2015.08.004
|
[26] |
ZHANG Yong-zhi, XIONG Rui, HE Hong-wen, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. doi: 10.1109/TVT.2018.2805189
|
[27] |
TAN J H, HAGIWARA Y, PANG W, et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals[J]. Computers in Biology and Medicine, 2018, 94: 19-26. doi: 10.1016/j.compbiomed.2017.12.023
|
[28] |
YANG Jing, GUO Ying-qing, ZHAO Wan-li. Long short-term memory neural network based fault detection and isolation for electro-mechanical actuators[J]. Neurocomputing, 2019, 360: 85-96.
|
[29] |
LEI Jin-hao, LIU Chao, JIANG Dong-xiang. Fault diagnosis of wind turbine based on long short-term memory networks[J]. Renewable Energy, 2019, 133: 422-432.
|
[30] |
ZHANG Bin, ZHANG Shao-hui, LI Wei-hua. Bearing performance degradation assessment using long short-term memory recurrent network[J]. Computers in Industry, 2019, 106: 14-29.
|
[31] |
SMITH W A, RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64/65: 100-131.
|
[32] |
BOUDIAF A, MOUSSAOUI A, DAHANE A, et al. A comparative study of various methods of bearing faults diagnosis using the Case Western Reserve University data[J]. Journal of Failure Analysis and Prevention, 2016, 16(2): 271-284.
|