Citation: | CHEN Xiao-bo, CHEN Cheng, CHEN Lei, WEI Zhong-jie, CAI Ying-feng, ZHOU Jun-jie. Interpolation method of traffic volume missing data based on improved low-rank matrix completion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 180-190. doi: 10.19818/j.cnki.1671-1637.2019.05.018 |
[1] |
LI Lin-chao, ZHANG Jian, WANG Yong-gang, et al. Missing value imputation for traffic-related time series data based on a multi-view learning method[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2933-2943. doi: 10.1109/TITS.2018.2869768
|
[2] |
WANG Hai, DAI Lei, CAI Ying-feng, et al. Salient object detection based on multi-scale contrast[J]. Neural Networks, 2018, 101: 47-56. doi: 10.1016/j.neunet.2018.02.005
|
[3] |
LYU Yi-sheng, DUAN Yan-jie, KANG Wen-wen, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
|
[4] |
许岩岩, 翟希, 孔庆杰, 等. 高速路交通流短时预测方法[J]. 交通运输工程学报, 2013, 13(2): 114-119. doi: 10.3969/j.issn.1671-1637.2013.02.017
XU Yan-yan, ZHAI Xi, KONG Qing-jie, et al. Short-term prediction method of freeway traffic flow[J]. Journal of Traffic and Transportation Engineering, 2013, 13(2): 114-119. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.02.017
|
[5] |
陈小波, 刘祥, 韦中杰, 等. 基于GA-LSSVR模型的路网短时交通流预测研究[J]. 交通运输系统工程与信息, 2017, 17(1): 60-66, 81. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201701011.htm
CHEN Xiao-bo, LIU Xiang, WEI Zhong-jie, et al. Short-term traffic flow forecasting of road network based on GA-LSSVR model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 60-66, 81. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201701011.htm
|
[6] |
雷定猷, 马强, 徐新平, 等. 基于非线性主成分分析和GA-RBF的高速公路交通量预测方法[J]. 交通运输工程学报, 2018, 18(3): 210-217. doi: 10.3969/j.issn.1671-1637.2018.03.022
LEI Ding-you, MA Qiang, XU Xin-ping, et al. Forecasting method of expressway traffic volume based on NPCA and GA-RBF[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 210-217. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.03.022
|
[7] |
ZHANG Jun-ping, WANG Fei-yue, WANG Kun-feng, et al. Data-driven intelligent transportation systems: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1624-1639. doi: 10.1109/TITS.2011.2158001
|
[8] |
孟鸿程, 陈淑燕. 交通流缺失数据处理方法比较分析[J]. 交通信息与安全, 2018, 36(2): 61-67. doi: 10.3963/j.issn.1674-4861.2018.02.009
MENG Hong-cheng, CHEN Shu-yan. A comparative analysis of data imputation methods for missing traffic flow data[J]. Journal of Transport Information and Safety, 2018, 36(2): 61-67. (in Chinese). doi: 10.3963/j.issn.1674-4861.2018.02.009
|
[9] |
李林超, 曲栩, 张健, 等. 基于特征级融合的高速公路异质交通流数据修复方法[J]. 东南大学学报(自然科学版), 2018, 48(5): 972-978. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201805029.htm
LI Lin-chao, QU Xu, ZHANG Jian, et al. Missing value imputation method for heterogeneous traffic flow data based on feature fusion[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(5): 972-978. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201805029.htm
|
[10] |
陆化普, 孙智源, 屈闻聪. 基于时空模型的交通流故障数据修正方法[J]. 交通运输工程学报, 2015, 15(6): 92-100, 117. doi: 10.3969/j.issn.1671-1637.2015.06.012
LU Hua-pu, SUN Zhi-yuan, QU Wen-cong. Repair method of traffic flow malfunction data based on temporal-spatial model[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 92-100, 117. (in Chinese). doi: 10.3969/j.issn.1671-1637.2015.06.012
|
[11] |
孙玲, 刘浩, 牛树云. 考虑时空相关性的固定检测缺失数据重构算法[J]. 交通运输工程学报, 2010, 10(5): 121-126. doi: 10.3969/j.issn.1671-1637.2010.05.021
SUN Ling, LIU Hao, NIU Shu-yun. Reconstructive method of missing data for location-specific detector considering spatio-temporal relationship[J]. Journal of Traffic and Transportation Engineering, 2010, 10(5): 121-126. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.05.021
|
[12] |
CHEN Xiao-bo, CHEN Cheng, CAI Ying-feng, et al. Kernel sparse representation with hybrid regularization for on-road traffic sensor data imputation[J]. Sensors, 2018, 18: 1-20. doi: 10.1109/JSEN.2018.2870221
|
[13] |
CHEN Xiao-bo, CAI Ying-feng, YE Qiao-lin, et al. Graph regularized local self-representation for missing value imputation with applications to on-road traffic sensor data[J]. Neurocomputing, 2018, 303: 47-59. doi: 10.1016/j.neucom.2018.04.029
|
[14] |
LI Yue-biao, LI Zhi-heng, LI Li. Missing traffic data: comparison of imputation methods[J]. IET Intelligent Transport Systems, 2014, 8(1): 51-57. doi: 10.1049/iet-its.2013.0052
|
[15] |
QU Li, LI Li, ZHANG Yi, et al. PPCA-based missing data imputation for traffic flow volume: a systematical approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(3): 512-522. doi: 10.1109/TITS.2009.2026312
|
[16] |
钱超, 陈建勋, 罗彦斌, 等. 基于随机森林的公路隧道运营缺失数据插补方法[J]. 交通运输系统工程与信息, 2016, 16(3): 81-87. doi: 10.3969/j.issn.1009-6744.2016.03.012
QIAN Chao, CHEN Jian-xun, LUO Yan-bin, et al. Random forest based operational missing data imputation for highway tunnel[J]. Journal of Transportation Engineering and Information Technology, 2016, 16(3): 81-87. (in Chinese). doi: 10.3969/j.issn.1009-6744.2016.03.012
|
[17] |
AHN J, KO E, KIM E Y. Highway traffic flow prediction using support vector regression and Bayesian classifier[C]//IEEE. 2016 International Conference on Big Data and Smart Computing. New York: IEEE, 2016: 239-244.
|
[18] |
ASIF M T, MITROVIC N, GARG L, et al. Low-dimensional models for missing data imputation in road networks[C]//IEEE. The 38th IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE, 2013: 3527-3531.
|
[19] |
TAN Hua-chun, FENG Guang-dong, FENG Jian-shuai, et al. A tensor-based method for missing traffic data completion[J]. Transportation Research Part C: Emerging Technologies, 2013, 28: 15-27. doi: 10.1016/j.trc.2012.12.007
|
[20] |
CHEN Xin-yu, HE Zhao-cheng, CHEN Yi-xian, et al. Missing traffic data imputation and pattern discovery with a Bayesian augmented tensor factorization model[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 66-77. doi: 10.1016/j.trc.2019.03.003
|
[21] |
刘园园. 快速低秩矩阵与张量恢复的算法研究[D]. 西安: 西安电子科技大学, 2013.
LIU Yuan-yuan. Algorithm research of fast low-rank matrix and tensor recovery[D]. Xi'an: Xidian University, 2013. (in Chinese).
|
[22] |
CANDÈS E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6): 717-772. doi: 10.1007/s10208-009-9045-5
|
[23] |
CAI Jian-feng, CANDÈS E J, SHEN Zuo-wei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. doi: 10.1137/080738970
|
[24] |
HASTIE T, MAZUMDER R, LEE J D, et al. Matrix completion and low-rank SVD via fast alternating least squares[J]. Journal of Machine Learning Research, 2015, 16: 3367-3402.
|
[25] |
MA Shi-qian, GOLDFARB D, CHEN Li-feng. Fixed point and Bregman iterative methods for matrix rank minimization[J]. Mathematical Programming, 2009, 128(1/2): 321-353.
|
[26] |
CHEN Xiao-bo, XIAO Yan, CAI Yin-feng, et al. Structural max-margin discriminant analysis for feature extraction[J]. Knowledge-Based Systems, 2014, 70: 154-166. doi: 10.1016/j.knosys.2014.06.020
|
[27] |
MURTAGH F, LEGENDRE P. Ward's hierarchical agglomerative clustering method: which algorithms implement ward's criterion?[J]. Journal of Classification, 2014, 31: 274-295.
|
[28] |
FARHANGFAR A, KURGAN L A, PEDRYCZ W. A novel framework for imputation of missing values in databases[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2007, 37(5): 692-709.
|
[29] |
CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE) —Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7: 1247-1250.
|
[30] |
ZHENG Zu-duo, SU Dong-cai, et al. Short-term traffic volume forecasting: a k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 143-157.
|