ZHOU Shi-bo, TANG Ji-hong, XIONG Zhen-nan. Aggregation characteristics of anchored vessels based on optimized FCM algorithm[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 137-148. doi: 10.19818/j.cnki.1671-1637.2019.06.013
Citation: ZHOU Shi-bo, TANG Ji-hong, XIONG Zhen-nan. Aggregation characteristics of anchored vessels based on optimized FCM algorithm[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 137-148. doi: 10.19818/j.cnki.1671-1637.2019.06.013

Aggregation characteristics of anchored vessels based on optimized FCM algorithm

doi: 10.19818/j.cnki.1671-1637.2019.06.013
More Information
  • Author Bio:

    ZHOU Shi-bo(1978-), male, associate professor, PhD, jmusailor@163.com

    XIONG Zhen-nan (1965-), male, professor, 1965znxiong@163.com

  • Received Date: 2019-06-11
  • Publish Date: 2019-12-25
  • For the lack of sensitivity of clustering results to noise sample points due to the random selection of initial clustering centers by fuzzy C-means(FCM) algorithm, by using the method of local density weighting, the selection range of the initial clustering centers was limited to the region of sample points with high local density, and the selection method of the initial clustering centers was optimized. The local density of sample points was used to improve the objective function, and then improve the influence of sample points with higher local density in the iterative process of the objective function, so that the clustering performance of FCM algorithm was promoted. The clustering effect of improved local density FCM(LD-FCM) algorithm was verified by artificial dataset and iris real dataset. The anchoring preference was analyzed by calculating the local density of anchored vessel's position data. Experimental result shows that compared with the FCM algorithm, the clustering accuracy rate, recall rate, and F-measure of the optimized LD-FCM algorithm improve by 2.9%, 3.8%, and 3.9%, respectively, which shows that the performance of the optimized LD-FCM algorithm is better than that of the FCM algorithm. The clustering results on the anchored vessels location data correctly reflect the aggregation characteristics and anchoring preference in Tianjin Port, and are consistent with the general practice of the vessels, which shows that the optimized LD-FCM algorithm is an effective way to analyze the aggregation characteristics and anchoring preference.

     

  • loading
  • [1]
    KROODSMA D A, MAYORGA J, HOCHBERG T, et al. Tracking the global footprint of fisheries[J]. Science, 2018, 359: 904-908. doi: 10.1126/science.aao5646
    [2]
    XIAO Fang-liang, LIGTERINGEN H, VAN GULIJK C, et al. Comparison study on AIS data of ship traffic behavior[J]. Ocean Engineering, 2015, 95: 84-93. doi: 10.1016/j.oceaneng.2014.11.020
    [3]
    ZHANG Wei-bin, GOERLANDT F, KUJALA P, et al. An advanced method for detecting possible near miss ship collisions from AIS data[J]. Ocean Engineering, 2016, 124: 141-156. doi: 10.1016/j.oceaneng.2016.07.059
    [4]
    CHEN Zhi-jun, XUE Jie, WU Chao-zhong, et al. Classification of vessel motion pattern in inland waterways based on automatic identification system[J]. Ocean Engineering, 2018, 161: 69-76. doi: 10.1016/j.oceaneng.2018.04.072
    [5]
    TU En-mei, ZHANG Guang-hao, RACHMAWATI L, et al. Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(5): 1559-1582. doi: 10.1109/TITS.2017.2724551
    [6]
    KIM J H, CHOI J H, YOO K H, et al. AA-DBSCAN: an approximate adaptive DBSCAN for finding clusters with varying densities[J]. The Journal of Supercomputing, 2019, 75(1): 142-169. doi: 10.1007/s11227-018-2380-z
    [7]
    丁兆颖, 姚迪, 吴琳, 等. 一种基于改进的DBSCAN的面向海量船舶位置数据码头挖掘算法[J]. 计算机工程与科学, 2015, 37(11): 2061-2067. doi: 10.3969/j.issn.1007-130X.2015.11.011

    DING Zhao-ying, YAO Di, WU Lin, et al. A dock mining algorithm for massive vessel location data based on improved DBSCAN[J]. Computer Engineering and Science, 2015, 37(11): 2061-2067. (in Chinese). doi: 10.3969/j.issn.1007-130X.2015.11.011
    [8]
    刘涛, 胡勤友, 杨春. 水上交通拥挤区域的聚类分析与识别[J]. 中国航海, 2010, 33(4): 75-78. doi: 10.3969/j.issn.1000-4653.2010.04.018

    LIU Tao, HU Qin-you, YANG Chun. Clustering analysis and identification of traffic congested waters[J]. Navigation of China, 2010, 33(4): 75-78. (in Chinese). doi: 10.3969/j.issn.1000-4653.2010.04.018
    [9]
    PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a frame work for anomaly detection and route prediction[J]. Entropy, 2013, 15: 2218-2245. doi: 10.3390/e15062218
    [10]
    赵梁滨, 史国友, 杨家轩. 基于DBSCAN算法的船舶轨迹自适应层次聚类[J]. 中国航海, 2018, 41(3): 53-58. doi: 10.3969/j.issn.1000-4653.2018.03.011

    ZHAO Liang-bin, SHI Guo-you, YANG Jia-xuan. Adaptive hierarchical clustering of ship trajectory with DBSCAN algorithm[J]. Navigation of China, 2018, 41(3): 53-58. (in Chinese). doi: 10.3969/j.issn.1000-4653.2018.03.011
    [11]
    WU Lin, XU Yong-jun, WANG Qi, et al. Mapping global shipping density from AIS data[J]. The Journal of Navigation, 2017, 70: 67-81. doi: 10.1017/S0373463316000345
    [12]
    Marine Management Organisation. Mapping UK shipping density and routes technical annex[R]. Welsh: Marine Management Organisation, 2014.
    [13]
    肖潇, 赵强, 邵哲平, 等. 基于AIS的特定船舶会遇实况分布[J]. 中国航海, 2014, 37(3): 50-53. doi: 10.3969/j.issn.1000-4653.2014.03.012

    XIAO Xiao, ZHAO Qiang, SHAO Zhe-ping, et al. Specific ship's encounter live distribution based on AIS[J]. Navigation of China, 2014, 37(3): 50-53. (in Chinese). doi: 10.3969/j.issn.1000-4653.2014.03.012
    [14]
    宁建强, 黄涛, 刁博宇, 等. 一种基于海量船舶轨迹数据的细粒度网格海上交通密度计算方法[J]. 计算机工程与科学, 2015, 37(12): 2242-2249. doi: 10.3969/j.issn.1007-130X.2015.12.008

    NING Jian-qiang, HUANG Tao, DIAO Bo-yu, et al. A fine grained grid-based maritime traffic density algorithm for mass ship trajectory data[J]. Computer Engineering and Science, 2015, 37(12): 2242-2249. (in Chinese). doi: 10.3969/j.issn.1007-130X.2015.12.008
    [15]
    LIU Chun-fang, HUANG Wen-bin, SUN Fu-chun, et al. LDS-FCM: a linear dynamical system based fuzzy C-means method for tactile recognition[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(1): 72-83. doi: 10.1109/TFUZZ.2018.2859184
    [16]
    徐超, 詹天明, 孔令成, 等. 基于学生t分布的鲁棒分层模糊算法及其在图像分割中的应用[J]. 电子学报, 2017, 45(7): 1695-1700. doi: 10.3969/j.issn.0372-2112.2017.07.020

    XU Chao, ZHAN Tian-ming, KONG Ling-cheng, et al. A robust hierarchical fuzzy algorithm with student's t-distribution for image segmentation application[J]. Acta Electronica Sinica, 2017, 45(7): 1695-1700. (in Chinese). doi: 10.3969/j.issn.0372-2112.2017.07.020
    [17]
    DING Yi, FU Xian. Kernel-based fuzzy C-means clustering algorithm based on genetic algorithm[J]. Neurocomputing, 2016, 188: 233-238. doi: 10.1016/j.neucom.2015.01.106
    [18]
    LU Wei-jia, YAN Zhuang-zhi. Improved FCM algorithm based on K-means and granular computing[J]. Journal of Intelligent Systems, 2015, 24(2): 215-222. doi: 10.1515/jisys-2014-0119
    [19]
    李锵, 张琦珺, 关欣, 等. 基于改进模糊C均值算法的颈动脉超声图像分割[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201801014.htm

    LI Qiang, ZHANG Qi-jun, GUAN Xin, et al. Segmentation of carotid intima media in ultrasound images using improved fuzzy C-means algorithm[J]. Journal of Tianjin University (Science and Technology), 2018, 51(1): 95-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201801014.htm
    [20]
    WU Zi-heng, WU Zhong-cheng, ZHANG Jun. An improved FCM algorithm with adaptive weights based on SA-PSO[J]. Neural Computing and Applications, 2017, 28(10): 3113-3118. doi: 10.1007/s00521-016-2786-6
    [21]
    于德新, 田秀娟, 杨兆升. 基于改进FCM聚类的交通控制时段划分[J]. 华南理工大学学报(自然科学版), 2016, 44(12): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201612008.htm

    YU De-xin, TIAN Xiu-juan, YANG Zhao-sheng. Division of traffic control periods based on improved FCM clustering[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(12): 53-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201612008.htm
    [22]
    席亮, 王勇, 张凤斌. 基于自适应人工鱼群FCM的异常检测算法[J]. 计算机研究与发展, 2019, 56(5): 1048-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201905015.htm

    XI Liang, WANG Yong, ZHANG Feng-bin. Anomaly detection algorithm based on FCM with adaptive artificial fish-swarm[J]. Journal of Computer Research and Development, 2019, 56(5): 1048-1059. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201905015.htm
    [23]
    周开乐, 杨善林, 王晓佳, 等. 基于自适应模糊度参数选择改进FCM算法的负荷分类[J]. 系统工程理论与实践, 2014, 34(5): 1283-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201405024.htm

    ZHOU Kai-le, YANG Shan-lin, WANG Xiao-jia, et al. Load classification based on improved FCM algorithm with adaptive fuzziness parameter selection[J]. System Engineering—Theory and Practice, 2014, 34(5): 1283-1289. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201405024.htm
    [24]
    宫改云, 高新波, 伍忠东. FCM聚类算法中模糊加权指数m的优选方法[J]. 模糊系统与数学, 2005, 19(1): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200501024.htm

    GONG Gai-yun, GAO Xin-bo, WU Zhong-dong. An optimal choice method of parameter m in FCM clustering algorithm[J]. Fuzzy Systems and Mathematics, 2005, 19(1): 143-148. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200501024.htm
    [25]
    王骏, 王士同. 基于混合距离学习的双指数模糊C均值算法[J]. 软件学报, 2010, 21(8): 1878-1888. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201008012.htm

    WANG Jun, WANG Shi-tong. Double indices FCM algorithm based on hybrid distance metric learning[J]. Journal of Software, 2010, 21(8): 1878-1888. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201008012.htm
    [26]
    王纵虎, 刘志镜, 陈东辉. 基于粒子群优化的模糊C-均值聚类算法研究[J]. 计算机科学, 2012, 39(9): 166-169. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201209039.htm

    WANG Zong-hu, LIU Zhi-jing, CHEN Dong-hui. Research of PSO-based fuzzy C-means clustering algorithm[J]. Computer Science, 2012, 39(9): 166-169. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201209039.htm
    [27]
    周世波, 徐维祥, 柴田. 基于数据加权策略的模糊C均值聚类算法[J]. 系统工程与电子技术, 2014, 36(11): 2314-2319. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201411033.htm

    ZHOU Shi-bo, XU Wei-xiang, CHAI Tian. Data-weighted fuzzy C-means clustering algorithm[J]. Systems Engineering and Electronic, 2014, 36(11): 2314-2319. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201411033.htm
    [28]
    RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344: 1492-1496.
    [29]
    PAL N R, BEZDEK J C. On cluster validity for the fuzzy C-mean model[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(3): 370-379.
    [30]
    XIE Juan-ying, GAO Hong-chao, XIE Wei-xin, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information Sciences, 2016, 354: 19-40.
    [31]
    江克勤, 施培蓓. 优化初始中心的模糊C-均值(FCM)算法[J]. 合肥工业大学学报(自然科学版), 2009, 32(5): 762-764, 768. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE200905037.htm

    JIANG Ke-qin, SHI Pei-bei. Optimized initial centers for fuzzy C-means algorithm[J]. Journal of Hefei University of Technology, 2009, 32(5): 762-764, 768. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE200905037.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (659) PDF downloads(355) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return