ZHANG Tong, MAO Bao-hua, XU Qi, FENG Jia, TANG Ji-meng. Timetable optimization of tram considering energy saving goals[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 171-181. doi: 10.19818/j.cnki.1671-1637.2019.06.016
Citation: ZHANG Tong, MAO Bao-hua, XU Qi, FENG Jia, TANG Ji-meng. Timetable optimization of tram considering energy saving goals[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 171-181. doi: 10.19818/j.cnki.1671-1637.2019.06.016

Timetable optimization of tram considering energy saving goals

doi: 10.19818/j.cnki.1671-1637.2019.06.016
More Information
  • Author Bio:

    ZHANG Tong(1989-), male, doctoral student, 16114195@bjtu.edu.cn

    MAO Bao-hua (1963-), male, professor, PhD, bhmao@bjtu.edu.cn

  • Received Date: 2019-07-02
  • Publish Date: 2019-12-25
  • The optimization problem of tram timetable in semi-exclusive right of way mode was studied, and the operation section was classified based on the speed limit and the composition of the head and end nodes. The complexity of tram section operation process was considered, and an energy saving optimization model of tram section speed guidance was constructed to reduce the total travel time and the total energy consumption. In order to make the two optimization objectives of total travel time and total energy consumption have the same degree of satisfaction, a fuzzy mathematical programming method was proposed to transform the double objective optimization problem into a single objective optimization problem. According to the nonlinear characteristics of the energy saving optimization model, a genetic algorithm based on simulation was proposed to solve the model. In order to test the validity of the model, based on the actual data of Qilin Tram Line 1 in Nanjing, the designed optimization method was used to optimize the existing timetable by selecting the 7:00-8:00 early peak period of a working day. Considering the influence of managers' operational service concepts on the optimization results, two schemes of minimum travel time objective and minimum energy consumption objective were designed and compared with the model. Optimization result shows that, compared with the existing operating timetable, the timetable adjusted by the energy saving optimization model saves 124.9 s in the upward direction, reducing by about 7.7%, and saves 394.9 s in the downward direction, reducing by about 24.3%. So, the optimization model can effectively improve the operation efficiency of the tram. Compared with the minimum travel time scheme, the total energy consumptions obtained by the optimization model in the upward and downward directions reduce by 56.7% and 53.5%, respectively. Compared with the minimum energy consumption scheme, the total train travel times obtained by the optimization model in the upward and downward directions reduce by 14.9% and 14.1%, respectively. So, the energy saving optimization model can effectively eliminate the conflict between travel time objective and energy consumption objective.

     

  • loading
  • [1]
    严兰. "互联互通+数字智能一体化"在现代有轨电车中的应用[J]. 都市快轨交通, 2016, 29(5): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG201605040.htm

    YAN Lan. Application of "interconnection+digital and intelligent integration" to modern urban tram[J]. Urban Rapid Rail Transit, 2016, 29(5): 125-130. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG201605040.htm
    [2]
    ASNIS I A, DMITRUK A V, OSMOLOVSKII N P. Solution of the problem of the energetically optimal control of the motion of a train by the maximum principle[J]. USSR Computational Mathematics and Mathematical Physics, 1985, 25(6): 37-44. doi: 10.1016/0041-5553(85)90006-0
    [3]
    HOWLETT P. Optimal strategies for the control of a train[J]. Automatica, 1996, 32(4): 519-532. doi: 10.1016/0005-1098(95)00184-0
    [4]
    HOWLETT P, PUDNEY P J, VU X. Local energy minimization in optimal train control[J]. Automatica, 2009, 45(11): 2692-2698. doi: 10.1016/j.automatica.2009.07.028
    [5]
    VU X. Analysis of necessary conditions for the optimal control of a train[D]. Adelaide: University of South Australia, 2006.
    [6]
    CHANG C S, SIM S S. Optimizing train movements through coast control using genetic algorithms[J]. IEE Proceedings: Electric Power Applications, 1997, 144(1): 65-73. doi: 10.1049/ip-epa:19970797
    [7]
    丁勇, 毛保华, 刘海东, 等. 定时约束条件下列车节能操纵的仿真算法研究[J]. 系统仿真学报, 2004, 16(10): 2241-2244. doi: 10.3969/j.issn.1004-731X.2004.10.032

    DING Yong, MAO Bao-hua, LIU Hai-dong, et al. An algorithm for energy-efficient train operation simulation with fixed running time[J]. Journal of System Simulation, 2004, 16(10): 2241-2244. (in Chinese). doi: 10.3969/j.issn.1004-731X.2004.10.032
    [8]
    BOCHARNIKOV Y V, TOBIAS A M, ROBERTS C, et al. Optimal driving strategy for traction energy saving on DC suburban railways[J]. IET Electric Power Applications, 2007, 1(5): 675-682. doi: 10.1049/iet-epa:20070005
    [9]
    SU Shuai, LI Xiang, TANG Tao, et al. A subway train timetable optimization approach based on energy-efficient operation strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 883-893. doi: 10.1109/TITS.2013.2244885
    [10]
    ALBRECHT T. Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control[C]∥WIT. Ninth International Conference on Computers in Railways. Southampton: WIT Press, 2004: 885-894.
    [11]
    陈荣武, 刘莉, 郭进. 基于遗传算法的列车运行能耗优化算法[J]. 交通运输工程学报, 2012, 12(1): 108-114. http://transport.chd.edu.cn/article/id/201201017

    CHEN Rong-wu, LIU Li, GUO Jin. Optimization algorithm of train operation energy consumption based on genetic algorithm[J]. Journal of Traffic and Transportation Engineering, 2012, 12(1): 108-114. (in Chinese). http://transport.chd.edu.cn/article/id/201201017
    [12]
    WONG K K, HO T K. Dwell-time and run-time control for DC mass rapid transit railways[J]. IET Electric Power Applications, 2007, 1(6): 956-966. doi: 10.1049/iet-epa:20060132
    [13]
    YIN J, CHEN D, ZHAO W, et al. Online adjusting subway timetable by Q-learning to save energy consumption in uncertain passenger demand[C]//IEEE. 17th International Conference on Intelligent Transportation Systems. New York: IEEE, 2014: 2743-2748.
    [14]
    CANCA D, ZARZO A. Design of energy-efficient timetables in two-way railway rapid transit lines[J]. Transportation Research Part B: Methodological, 2017, 102: 142-161. doi: 10.1016/j.trb.2017.05.012
    [15]
    颜邦杰, 张辰秋, 林志铭, 等. 捷运列车排点与节能[J]. 交通信息与安全, 2011, 29(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201101035.htm

    YAN Bang-Jie, ZHANG Chen-qiu, LIN Zhi-ming, et al. MRT timetable and energy conservation[J]. Journal of Transport Information and Safety, 2011, 29(1): 139-144. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201101035.htm
    [16]
    YANG Xin, LI Xiang, GAO Zi-you, et al. A cooperative scheduling model for timetable optimization in subway systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 438-447. doi: 10.1109/TITS.2012.2219620
    [17]
    XU Xiao-ming, LI Ke-ping, LI Xiang. A multi-objective subway timetable optimization approach with minimum passenger time and energy consumption[J]. Journal of Advanced Transportation, 2016, 50: 69-95.
    [18]
    杨荟, 周建栋, 李想. 基于节能的地铁时刻表随机机会约束规划模型[J]. 系统工程学报, 2018, 33(2): 197-211. https://www.cnki.com.cn/Article/CJFDTOTAL-XTGC201802006.htm

    YANG Hui, ZHOU Jian-dong, LI Xiang. Energy-efficient stochastic chance-constrained programming model for train timetable optimization[J]. Journal of Systems Engineering, 2018, 33(2): 197-211. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTGC201802006.htm
    [19]
    李姗. 基于时变客流的城市轨道交通节能列车运行图优化方法研究[D]. 北京: 北京交通大学, 2017.

    LI Shan. Energy-efficient train timetable optimization for urban rail transit with time-varying passenger demand[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese).
    [20]
    KACZMAREK M, RYCHLEWSKI J. Tram priority traffic control on complex intersections[J]. IFAC Proceedings Volumes, 2006, 11(1): 416-420.
    [21]
    SERMPIS D, PAPADAKOS P, FOUSEKIS K. Tram priority at signal-controlled junctions[J]. Proceedings of the Institution of Civil Engineers, 2012, 165(2): 87-96.
    [22]
    陈福贵, 谭小土. 现代有轨电车路口优先参数研究[J]. 铁道工程学报, 2016(8): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201608023.htm

    CHEN Fu-gui, TAN Xiao-tu. Research on the crossing priority parameters of modern trams[J]. Journal of Railway Engineering Society, 2016(8): 116-120. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201608023.htm
    [23]
    周洋帆, 贾顺平, 陈绍宽, 等. 有轨电车信号优先时长阈值优化模型[J]. 交通运输工程学报, 2016, 16(5): 151-158. http://transport.chd.edu.cn/article/id/201605017

    ZHOU Yang-fan, JIA Shun-ping, CHEN Shao-kuan, et al. Optimization model signal priority time threshold of tram[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 151-158. (in Chinese). http://transport.chd.edu.cn/article/id/201605017
    [24]
    周洋帆. 半独立路权下有轨电车的信号优先策略及建模研究[D]. 北京: 北京交通大学, 2016.

    ZHOU Yang-fan. Signal priority strategies and modeling for trams with exclusive lane[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese).
    [25]
    欧冬秀, 陈丽璇, 施莉娟, 等. 基于交叉口信号优先的有轨电车车速引导控制模型及实现方法的研究[J]. 铁道学报, 2017, 39(6): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201706011.htm

    OU Dong-xiu, CHEN Li-xuan, SHI Li-juan, et al. Research on speed-guidance control model and implementation method for tramcars based on signal priority at intersections[J]. Journal of the China Railway Society, 2017, 39(6): 80-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201706011.htm
    [26]
    江志彬, 徐瑞华. 信号被动优先条件下的有轨电车运行图编制优化[J]. 交通运输工程学报, 2016, 16(3): 100-107. http://transport.chd.edu.cn/article/id/201603012

    JIANG Zhi-bin, XU Rui-hua. Scheduling optimization of tram operation diagram under signal passive priority condition[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 100-107. (in Chinese). http://transport.chd.edu.cn/article/id/201603012
    [27]
    SHI Jun-gang, SUN Yan-shuo, SCHONFELD P, et al. Joint optimization of tram timetables and signal timing adjustments at intersections[J]. Transportation Research Part C: Emerging Technologies, 2017, 83: 104-119.
    [28]
    JI Yu-xiong, ZHANG Xi, TANG Yu, et al. Coordinated optimization of tram trajectories with arterial signal timing resynchronization[J]. Transportation Research Part C: Emerging Technologies, 2019, 99: 53-66.
    [29]
    薛晶, 周振华. 现代有轨电车停站时分影响因素分析[J]. 浙江交通职业技术学院学报, 2014, 15(2): 53-55, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJZJ201402012.htm

    XUE Jing, ZHOU Zhen-hua. Research on factors related to stopping time in tram[J]. Journal of Zhejiang Institute of Communications, 2014, 15(2): 53-55, 77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZJZJ201402012.htm
    [30]
    LI Xiang, WANG De-chun, LI Ke-ping, et al. A green train scheduling model and fuzzy multi-objective optimization algorithm[J]. Applied Mathematical Modelling, 2013, 37(4): 2063-2073.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (740) PDF downloads(496) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return