LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. doi: 10.19818/j.cnki.1671-1637.2020.01.003
Citation: LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. doi: 10.19818/j.cnki.1671-1637.2020.01.003

Review on temperature action and effect of steel-concrete composite girder bridge

doi: 10.19818/j.cnki.1671-1637.2020.01.003
More Information
  • Author Bio:

    LIU Yong-jian(1966-), male, professor, PhD, liuyongjian@chd.edu.cn

  • Received Date: 2019-09-12
  • Publish Date: 2020-02-25
  • To understand the temperature action and effect of composite girder bridge in depth, the research status of domestic and overseas, including the temperature action and effect of hydration heat in construction stage, the temperature action patterns and finding values methods in the operation stage, and the calculation methods of temperature effect, was summarized and analyzed. The subsequent research emphases and directions were discussed. Research result shows that the hydration heat temperature effect is an important reason for the early cracking of decks in cast-in-situ composite girder bridges. The accurate selection of applicable hydration heat model and the consideration of the effect of temperature history on the elastic modulus and tensile strength of hardening concrete and the connection stiffness of studs are the keys to accurately calculate the hydration heat temperature effect of composite girder. Three temperature action patterns, including uniform temperature, positive and negative temperature gradients, are generally taken into consideration on the composite girder bridge in the operation environment. The specifications of temperature action patterns and values of composite girder bridges are not coincident due to the differences in climate environments and research histories in different countries. Additionally, the temperature gradients are not obtained based on the statistical analysis and the existing historical meteorological data resources are not fully utilized. The temperature effect calculations of composite girder bridges are mostly based on the finite element numerical simulation. The analytical calculation methods for solving the temperature effect of composite girders are also improved, from taking no account of the interfacial slip and simple steel-concrete uniform temperature difference to considering the interfacial slip and arbitrary temperature distribution of steel and concrete. However, the theoretical model for solving the temperature effect of composite girder with arbitrary boundaries should be strengthened. The future research directions of composite girder bridge temperature problem should focus on the composite girder temperature action pattern based on effect classification, the in-depth understanding the temperature self-generated and secondary effects from the mechanism, and strengthening the long-term temperature measurement to determine the representative values of temperature actions by statistical analysis, as well as fully using the historical meteorological data of the meteorological departments in various regions of China to study the regional differences of the temperature action values.

     

  • loading
  • [1]
    聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6): 110-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201206016.htm

    NIE Jian-guo, TAO Mu-xuan, WU Li-li, et al. Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45(6): 110-122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201206016.htm
    [2]
    刘永健, 高诣民, 周绪红, 等. 中小跨径钢-混凝土组合梁桥技术经济性分析[J]. 中国公路学报, 2017, 30(3): 1-13. doi: 10.3969/j.issn.1001-7372.2017.03.001

    LIU Yong-jian, GAO Yi-min, ZHOU Xu-hong, et al. Technical and economic analysis in steel-concrete composite girder bridges with small and medium span[J]. China Journal of Highway and Transport, 2017, 30(3): 1-13. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.001
    [3]
    聂建国, 王宇航. 钢-混凝土组合梁疲劳性能研究综述[J]. 工程力学, 2012, 29(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201206003.htm

    NIE Jian-guo, WANG Yu-hang. Research status on fatigue behavior of steel-concrete composite beams[J]. Engineering Mechanics, 2012, 29(6): 1-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201206003.htm
    [4]
    刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59-78. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905006.htm

    LIU Yong-jian, LIU Jiang, ZHANG Ning. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(5): 59-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905006.htm
    [5]
    WITTFOHT H. 意大利坎纳维诺桥在施工中发生破坏的原因[J]. 世界桥梁, 1986(4): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL198604006.htm

    WITTFOHT H. Reasons for the destruction of the Cannavino Bridge in Italy during construction[J]. World Bridges, 1986(4): 61-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL198604006.htm
    [6]
    HECKEL R. The Fourth Danube Bridge in Vienna—damage and repair[J]. Development of Bridge Design and Construction Process, 1971: 588-598.
    [7]
    刘兴法. 混凝土结构的温度应力分析[M]. 北京: 人民交通出版社, 1991.

    LIU Xing-fa. Analysis of Temperature Stress of Concrete Structure[M]. Beijing: China Communications Press, 1991. (in Chinese).
    [8]
    聂建国. 钢-混凝土组合结构桥梁[M]. 北京: 人民交通出版社, 2011.

    NIE Jian-guo. Steel-Concrete Composite Structure Bridge[M]. Beijing: China Communications Press, 2011. (in Chinese).
    [9]
    张宁, 周鑫, 刘永健, 等. 基于点阵式测量的混凝土箱梁水化热温度场原位试验[J]. 土木工程学报, 2019, 52(3): 76-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903008.htm

    ZHANG Ning, ZHOU Xin, LIU Yong-jian, et al. In-situ test on hydration heat temperature of box girder based on array measurement[J]. China Civil Engineering Journal, 2019, 52(3): 76-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903008.htm
    [10]
    CHOI S, CHA S W, OH B H, et al. Thermo-hygro-mechanical behavior of early-age concrete deck in composite bridge under environmental loadings. Part 1: temperature and relative humidity[J]. Materialsand Structures, 2011, 44(7): 1325-1346. doi: 10.1617/s11527-011-9751-8
    [11]
    朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 2012.

    ZHU Bo-fang. Thermal Stresses and Temperature Control of Mass Concrete[M]. Beijing: China Electric Power Press, 2012. (in Chinese).
    [12]
    CRSITOFARI C, NOTTON G, LOUCHE A. Study of the thermal behaviour of a production unit of concrete structural components[J]. Applied Thermal Engineering, 2004, 24(7): 1087-1101. doi: 10.1016/S1359-4311(03)00161-3
    [13]
    SCHUTTER G D. Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration-based material laws[J]. Computers and Structures, 2002, 80(27-30): 2035-2042. doi: 10.1016/S0045-7949(02)00270-5
    [14]
    ULM F J, COUSSY O. Modeling of thermochemomechanical couplings of concrete at early ages[J]. Journal of Engineering Mechanics, 1995, 121(7): 785-794. doi: 10.1061/(ASCE)0733-9399(1995)121:7(785)
    [15]
    BAZANT Z P. Constitutive equation for concrete creep and shrinkage based on thermodynamics of multiphase system[J]. Materials and Structures, l970, 3(13): 3-36.
    [16]
    DE SCHUTTER G, TAERWE L. Degree of hydration-based description of mechanical properties of early age concrete[J]. Materials and Structures, 1996, 29(6): 335-344. doi: 10.1007/BF02486341
    [17]
    TOPKAYA C, YURA J A, WILLIAMSON E B. Composite shear stud strength at early concrete ages[J]. Journal of Structural Engineering, 2004, 130(6): 952-960. doi: 10.1061/(ASCE)0733-9445(2004)130:6(952)
    [18]
    SUBRAMANIAM K V, KUNIN J, CURTIS R, et al. Influence of early temperature rise on movements and stress development in concrete decks[J]. Journal of Bridge Engineering, 2010, 15(1): 108-116. doi: 10.1061/(ASCE)1084-0702(2010)15:1(108)
    [19]
    GARA F, LEONI G, DEZI L. Slab cracking control in continuous steel-concrete bridge decks[J]. Journal of Bridge Engineering, 2013, 18(12): 1319-1327. doi: 10.1061/(ASCE)BE.1943-5592.0000459
    [20]
    CHOI S, CHA S W, OH B H, et al. Thermo-hygro-mechanical behavior of early-age concrete deck in composite bridge under environmental loadings. Part 2: strain and stress[J]. Materials and Structures, 2011, 44(7): 1347-1367. doi: 10.1617/s11527-011-9752-7
    [21]
    BERTAGNOLI G, GINO D, MARTINELLI E. A simplified method for predicting early-age stresses in slabs of steel-concrete composite beams in partial interaction[J]. Engineering Structures, 2017, 140: 286-297. doi: 10.1016/j.engstruct.2017.02.058
    [22]
    LEBET J P, DUCRET J M. Experimental and theoretical study of the behaviour of composite bridges during construction[J]. Journal of Constructional Steel Research, 1998, 46(1-3): 69-70. doi: 10.1016/S0143-974X(98)00093-5
    [23]
    LEBET J P, DUCRET J M. Early concrete cracking of composite bridges during construction[C]//ASCE. Proceedings of the Conference: Composite Construction in Steel and Concrete. New York: ASCE, 2000: 13-24.
    [24]
    ANSNAES V, ELGAZZAR H. Concrete cracks in composite bridges[R]. Stockholm: Royal Institute of Technology, 2012.
    [25]
    ZUK W. Thermal behavior of composite bridges—insulated and uninsulated[J]. Highway Research Record, 1965(76): 231-253.
    [26]
    BERWANGER C. Transient thermal behavior of composite bridges[J]. Journal of Structural Engineering, 1983, 109(10): 2325-2339. doi: 10.1061/(ASCE)0733-9445(1983)109:10(2325)
    [27]
    DILGER W H, GHALI A, CHAN M, et al. Temperature stresses in composite box girder bridges[J]. Journal of Structural Engineering, 1983, 109(6): 1460-1478. doi: 10.1061/(ASCE)0733-9445(1983)109:6(1460)
    [28]
    FU H C, NG S F, CHEUNG M S. Thermal behavior of composite bridges[J]. Journal of Structural Engineering, 1989, 116(12): 3302-3323.
    [29]
    EMERSON M. Bridge temperature estimated from the shade temperature[R]. Berkshire: Department of Transportation, 1976.
    [30]
    EMERSON M. Thermal movements in concrete bridges—field measurements and methods of prediction[R]. Detroit: American Concrete Institute, 1981.
    [31]
    IMBSEN R A, VANDERSHAF D E, SCHAMBER R A, et al. Thermal effects in concrete bridge superstructures[R]. Washington DC: TRB, 1985.
    [32]
    MOORTY S, ROEDER C W. Temperature-dependent bridge movements[J]. Journal of Structural Engineering, 1992, 118(4): 1090-1105. doi: 10.1061/(ASCE)0733-9445(1992)118:4(1090)
    [33]
    MOORTY S. Thermal movements in bridges[D]. Seattle: University of Washington, 1991.
    [34]
    ROEDER C W. Thermal movement design procedure for steeland concrete bridges[R]. Washington DC: National Cooperative Highway Research Program, 1998.
    [35]
    ROEDER C W. Thermal movement design procedure for steel and concrete bridges[R]. Washington DC: TRB, 2002.
    [36]
    ROEDER C W. Proposed design method for thermal bridge movements[J]. Journal of Bridge Engineering, 2003, 8(1): 12-19. doi: 10.1061/(ASCE)1084-0702(2003)8:1(12)
    [37]
    孙国晨, 关荣财, 姜英民, 等. 钢-混凝土叠合梁横截面日照温度分布研究[J]. 工程力学, 2006, 23(11): 122-127, 138. doi: 10.3969/j.issn.1000-4750.2006.11.020

    SUN Guo-chen, GUAN Rong-cai, JIANG Ying-min, et al. Sunshine-induced temperature distribution on cross section of steel-concrete composite beams[J]. Engineering Mechanics, 2006, 23(11): 122-127, 138. (in Chinese). doi: 10.3969/j.issn.1000-4750.2006.11.020
    [38]
    CHEN Quan. Effects of thermal loads on Texas steel bridges[D]. Austin: University of Texas at Austin, 2008.
    [39]
    刘江, 刘永健, 房建宏, 等. 高原高寒地区"上"形钢-混凝土组合梁的竖向温度梯度模式[J]. 交通运输工程学报, 2017, 17(4): 32-44. doi: 10.3969/j.issn.1671-1637.2017.04.004

    LIU Jiang, LIU Yong-jian, FANG Jian-hong, et al. Vertical temperature gradient patterns of上-shaped steel-concrete composite girder in arctic-alpine region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 32-44. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.004
    [40]
    盛兴旺, 郑纬奇, 朱志辉, 等. 小半径曲线刚构箱梁桥日照时变温度场与温度效应[J]. 交通运输工程学报, 2019, 19(4): 24-34. doi: 10.3969/j.issn.1671-1637.2019.04.003

    SHENG Xing-wang, ZHENG Wei-qi, ZHU Zhi-hui, et al. Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 24-34. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.04.003
    [41]
    陈彦江, 王力波, 李勇. 钢-混凝土组合梁桥温度场及温度效应研究[J]. 公路交通科技, 2014, 31(11): 85-91. doi: 10.3969/j.issn.1002-0268.2014.11.014

    CHEN Yan-jiang, WANG Li-bo, LI Yong. Research of temperature field and its effect of steel-concrete composite girder bridge[J]. Journal of Highway and Transportation Research and Development, 2014, 31(11): 85-91. (in Chinese). doi: 10.3969/j.issn.1002-0268.2014.11.014
    [42]
    PRIESTLEY M J N. Design of concrete bridges for temperature gradients[J]. Journal of the American Concrete Institute, 1978, 75(5): 209-217.
    [43]
    KENNEDY J B, SOLIMAN M H. Temperature distribution in composite bridges[J]. Journal of Structure Engineering, 1987, 113(3): 475-82. doi: 10.1061/(ASCE)0733-9445(1987)113:3(475)
    [44]
    LIU Jiang, LIU Yong-jian, JIANG Lei, et al. Long-term field test of temperature gradients on the composite girder of a long-span cable-stayed bridge[J]. Advances in Structural Engineering, 2019, 22(13): 2785-2798. doi: 10.1177/1369433219851300
    [45]
    MAES M A, DILGER W H, BALLYK P D. Extreme values of thermal loading parameters in concrete bridges[J]. Canadian Journal of Civil Engineering, 1992, 19(6): 935-946. doi: 10.1139/l92-112
    [46]
    LI Dong-ning, MAES M A, DILGER W H. Thermal design criteria for deep prestressed concrete girders based on data from Confederation Bridge[J]. Canadian Journal of Civil Engineering, 2004, 31(5): 813-825. doi: 10.1139/l04-041
    [47]
    陶翀, 谢旭, 申永刚, 等. 基于概率分析的混凝土箱梁温度梯度模式[J]. 浙江大学学报(工学版), 2014, 48(8): 1353-1361. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201408002.htm

    TAO Chong, XIE Xu, SHEN Yong-gang, et al. Study on temperature gradient of concrete box girder based on probability analysis[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(8): 1353-1361. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201408002.htm
    [48]
    史道济. 实用极值统计方法[M]. 天津: 天津科学技术出版社, 2006.

    SHI Dao-ji. Practical Extremum Statistical Method[M]. Tianjin: Tianjin Science and Technology Press, 2006. (in Chinese).
    [49]
    鲁乃唯, 刘扬, 肖新辉. 实测车流作用下大跨桥梁荷载效应极值外推法[J]. 交通运输工程学报, 2018, 18(5): 47-55. doi: 10.3969/j.issn.1671-1637.2018.05.005

    LU Nai-wei, LIU Yang, XIAO Xin-hui. Extrapolating method of extreme load effects on long-span bridge under actual traffic loads[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 47-55. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.05.005
    [50]
    聂建国, 沈聚敏. 滑移效应对钢-混凝土组合梁弯曲强度的影响及其计算[J]. 土木工程学报, 1997, 30(1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199701005.htm

    NIE Jian-guo, SHEN Ju-min. Influence of slip effect on bending strength of steel-concrete composite beams and its calculation[J]. China Civil Engineering Journal, 1997, 30(1): 31-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199701005.htm
    [51]
    王达, 王海柱, 刘扬. 中、美、欧标准中钢-混组合结构桥面系竖向温度梯度效应的比较[J]. 工业建筑, 2016, 46(10): 163-168, 173. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201610033.htm

    WANG Da, WANG Hai-zhu, LIU Yang. In comparison with vertical temperature gradient effects of steel-concrete composite bridge deck in Chinese, American and EU Codes[J]. Industrial Construction, 2016, 46(10): 163-168, 173. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201610033.htm
    [52]
    苏靖海, 段树金. 钢-混凝土双面组合箱梁日照温度场研究[J]. 石家庄铁道大学学报(自然科学版), 2012, 25(2): 6-10, 80. doi: 10.3969/j.issn.2095-0373.2012.02.002

    SU Jing-hai, DUAN Shu-jin. Study on sunshine temperature field of double steel-concrete composite box girder by solar radiation[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2012, 25(2): 6-10, 80. (in Chinese). doi: 10.3969/j.issn.2095-0373.2012.02.002
    [53]
    苏靖海, 段树金. 钢-混凝土双面组合箱梁日照温度效应研究[J]. 石家庄铁道大学学报(自然科学版), 2013, 26(4): 11-14. doi: 10.3969/j.issn.2095-0373.2013.04.003

    SU Jing-hai, DUAN Shu-jin. Study of temperature effects of double steel-concrete composite box girder by solar radiation[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2013, 26(4): 11-14. (in Chinese). doi: 10.3969/j.issn.2095-0373.2013.04.003
    [54]
    CHEN Xiao-qiang, LIU Qi-wei, ZHU Jun. Measurement and theoretical analysis of solar temperature field in steel-concrete composite girder[J]. Journal of Southeast University (English Edition), 2009, 25(4): 513-517.
    [55]
    赵品, 叶见曙. 波形钢腹板箱梁桥面板横向温度效应分析[J]. 哈尔滨工程大学学报, 2019, 40(5): 974-978. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201905017.htm

    ZHAO Pin, YE Jian-shu. Analysis of transverse temperature effects on the deck of box girder with corrugated steel webs[J]. Journal of Harbin Engineering University, 2019, 40(5): 974-978. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201905017.htm
    [56]
    董旭, 邓振全, 李树忱, 等. 大跨波形钢腹板箱梁桥日照温度场及温差效应研究[J]. 工程力学, 2017, 34(9): 230-238. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709027.htm

    DONG Xu, DENG Zhen-quan, LI Shu-chen, et al. Research on sun light temperature field and thermal difference effect of long span box girder bridge with corrugated steel webs[J]. Engineering Mechanics, 2017, 34(9): 230-238. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709027.htm
    [57]
    郭翔飞. 波纹钢腹板预应力混凝土箱梁温度效应研究[D]. 西安: 长安大学, 2011.

    GUO Xiang-fei. Research on temperature effect of prestressed concrete box girder with corrugated steel webs[D]. Xi'an: Chang'an University, 2011. (in Chinese).
    [58]
    周良, 陆元春, 李雪峰. 钢-混凝土组合梁的温度应力计算[J]. 公路交通科技, 2012, 29(5): 83-88. doi: 10.3969/j.issn.1002-0268.2012.05.014

    ZHOU Liang, LU Yuan-chun, LI Xue-feng. Calculation of temperature stress of steel-concrete composite beam[J]. Journal of Highway and Transportation Research and Development, 2012, 29(5): 83-88. (in Chinese). doi: 10.3969/j.issn.1002-0268.2012.05.014
    [59]
    刘永健, 刘江, 张宁, 等. 钢-混凝土组合梁温度效应的解析解[J]. 交通运输工程学报, 2017, 17(4): 9-19. doi: 10.3969/j.issn.1671-1637.2017.04.002

    LIU Yong-jian, LIU Jiang, ZHANG Ning, et al. Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 9-19. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.002
    [60]
    吴迅, 陈经伟, 肖春, 等. 温差、收缩引起的钢-混凝土组合梁界面处剪力作用研究[J]. 结构工程师, 2009, 25(1): 41-44, 54. doi: 10.3969/j.issn.1005-0159.2009.01.009

    WU Xun, CHEN Jing-wei, XIAO Chun, et al. Study on shear effect caused by temperature and shrinkage on the interface of steel-concrete composite beams[J]. Structural Engineers, 2009, 25(1): 41-44, 54. (in Chinese). doi: 10.3969/j.issn.1005-0159.2009.01.009
    [61]
    陈玉骥, 叶梅新. 钢-混凝土结合梁在温度作用下的响应分析[J]. 中国铁道科学, 2001, 22(5): 48-53. doi: 10.3321/j.issn:1001-4632.2001.05.008

    CHEN Yu-ji, YE Mei-xin. Analyses of responses of composite girders under the action of temperature[J]. China Railway Science, 2001, 22(5): 48-53. (in Chinese). doi: 10.3321/j.issn:1001-4632.2001.05.008
    [62]
    陈玉骥, 叶梅新. 钢-混凝土连续结合梁的温度效应[J]. 中南大学学报(自然科学版), 2004, 35(1): 142-146. doi: 10.3969/j.issn.1672-7207.2004.01.028

    CHEN Yu-ji, YE Mei-xin. Temperature responses of steel-concrete continuous composite girders[J]. Journal of Central South University (Natural Science), 2004, 35(1): 142-146. (in Chinese). doi: 10.3969/j.issn.1672-7207.2004.01.028
    [63]
    朱坤宁, 万水. 温差和荷载引起的FRP-钢组合梁界面剪应力分析[J]. 解放军理工大学学报(自然科学版), 2011, 12(4): 387-392. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201104016.htm

    ZHU Kun-ning, WAN Shui. Interfacial shear stress of FRP-Steel composite beams subjected to temperature and load action[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2011, 12(4): 387-392. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201104016.htm
    [64]
    周勇超, 胡圣能, 宋磊, 等. 钢-混凝土组合梁的温度骤变效应分析[J]. 交通运输工程学报, 2013, 13(1): 20-26. doi: 10.3969/j.issn.1671-1637.2013.01.004

    ZHOU Yong-chao, HU Sheng-neng, SONG Lei, et al. Effect analysis of steel-concrete composite beam caused by sudden change of temperature[J]. Journal of Traffic and Transportation Engineering, 2013, 13(1): 20-26. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.01.004
    [65]
    阴存欣. 钢-混组合梁温度及收缩效应分析的电算方法[J]. 中国公路学报, 2014, 27(11): 76-83. doi: 10.3969/j.issn.1001-7372.2014.11.011

    YIN Cun-xin. Computing method for effect analysis of temperature and shrinkage on steel-concrete composite beams[J]. China Journal of Highway and Transport, 2014, 27(11): 76-83. (in Chinese). doi: 10.3969/j.issn.1001-7372.2014.11.011
    [66]
    GIRHAMMAR U A, GOPU V K A. Composite beam-columns with interlayer slip—exact analysis[J]. Journal of Structural Engineering, 1993, 119(4): 1265-1282. doi: 10.1061/(ASCE)0733-9445(1993)119:4(1265)
    [67]
    LUCAS J M, BERRED A, LOUIS C. Thermal actions on a steel box girder bridge[J]. Structures and Buildings, 2003, 156(2): 175-182.
    [68]
    LUCAS J M, VIRLOGEUX M, LOUIS C. Temperature in the box girder of the Normandy Bridge[J]. Journal of the International Association for Bridge and Structural Engineering, 2005, 15(3): 156-165.
    [69]
    CHANG S P, IM C K. Thermal behaviour of composite box-girder bridges[J]. Structures and Buildings, 2000, 140(2): 117-126.
    [70]
    POTGIETER I C, GAMBLE W L. Nonlinear temperature distributions in bridges at different locations in the United States[J]. Journal of Precast/Prestressed Concrete Institute, 1989, 34(4): 80-103.
    [71]
    MIRAMBELL E, AGUADO A. Temperature and stress distributions in concrete box girder bridges[J]. Journal of Structural Engineering, 1990, 116(9): 2388-2409. doi: 10.1061/(ASCE)0733-9445(1990)116:9(2388)
    [72]
    季德钧, 刘江, 张瑑芳, 等. 高原高寒地区钢-混凝土组合梁斜拉桥温度效应分析[J]. 建筑科学与工程学报, 2016, 33(1): 113-119. doi: 10.3969/j.issn.1673-2049.2016.01.016

    JI De-jun, LIU Jiang, ZHANG Zhuan-fang, et al. Temperature effect analysis of steel-concrete composite girder cable-stayed bridge in arctic-alpine region[J]. Journal of Architecture and Civil Engineering, 2016, 33(1): 113-119. (in Chinese). doi: 10.3969/j.issn.1673-2049.2016.01.016
    [73]
    王志祥. 高寒地区钢-混凝土组合梁斜拉桥施工阶段温度效应分析[D]. 西安: 长安大学, 2017.

    WANG Zhi-xiang. The temperature effect of the steel-concrete composite cable-stayed bridge during the construction phase in arctic-alpine region[D]. Xi'an: Chang'an University, 2017. (in Chinese).
    [74]
    刘广龙, 刘江, 刘永健, 等. 西北极寒地区混凝土箱梁温度场实测与仿真分析[J]. 公路交通科技, 2018, 35(3): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201803009.htm

    LIU Guang-long, LIU Jiang, LIU Yong-jian, et al. Measurement and simulation of temperature field of concrete box girder in northwest severe cold area[J]. Journal of Highway and Transportation Research and Development, 2018, 35(3): 64-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201803009.htm
    [75]
    ZANG Hai-xiang, XU Qing-shan, BIAN Hai-hong. Generation of typical solar radiation data for different climates of China[J]. Energy, 2012, 38(1): 236-248. doi: 10.1016/j.energy.2011.12.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1083) PDF downloads(408) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return