SHENG Peng-cheng, LUO Xin-wen, LI Jing-pu, WU Xue-yi, BIAN Xue-liang. Obstacle avoidance path planning of intelligent electric vehicles in winding road scene[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 195-204. doi: 10.19818/j.cnki.1671-1637.2020.02.016
Citation: SHENG Peng-cheng, LUO Xin-wen, LI Jing-pu, WU Xue-yi, BIAN Xue-liang. Obstacle avoidance path planning of intelligent electric vehicles in winding road scene[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 195-204. doi: 10.19818/j.cnki.1671-1637.2020.02.016

Obstacle avoidance path planning of intelligent electric vehicles in winding road scene

doi: 10.19818/j.cnki.1671-1637.2020.02.016
Funds:

National Key Research and Development Project of China 2017YFB0102500

Science and Technology Research Project of Hebei Universities QN2019094

More Information
  • Author Bio:

    SHENG Peng-cheng(1983-), male, associate professor, doctoralstudent, E-mail: 570463334@qq.com

    BIAN Xue-liang(1957-), male, professor, PhD, E-mail: 1723690290@qq.com

  • Received Date: 2019-10-19
  • Publish Date: 2020-04-25
  • In order to study the reliability of obstacle avoidance planning for intelligent electric vehicles in the winding road scene, a method of converting the Cartesian coordinate system into the curvilinear coordinate system was proposed. The quintic Bézier curve was used to approximate the lane line in the winding road scene to obtain the reference path. Through the arc-length parameterization of reference path, a curvilinear coordinate system was established by using the arc-length as abscissa and the lateral offset as ordinate. According to the position of the vehicle and the sub-target points in the curvilinear coordinate system, the candidate paths were generated by the cubic polynomial in real time, and the candidate paths were optimized by using the sequence quadratic planning method. In order to verify the reliability of the proposed algorithm, an electric vehicle was used as a platform to build a test car with monocular cameras, 64-line laser radar, industrial control computers and other equipments. The online simulation of vehicle obstacle avoidance algorithm in the winding road scene was implemented based on Apollo platform. During the real vehicle experiment in the zone, the GPS position error and heading angle cumulative error of the obstacle avoidance algorithm were analyzed. Research result shows that the obstacle avoidance path planning of vehicle in the winding road scene can effectively describe the information of path curvature radius, the offset distance of vehicle center from the lane line, etc, and it is easy to determine the driving area of the vehicle and the obstacle position information ahead, so as to generate the optimal path. During the obstacle avoidance in the zone, the GPS position error occurs at the initial point, turning point and obstacle avoidance point, the maximum error is 0.15 m, and the heading angle cumulative error is 12°. The sudden increase of curve position error is mainly caused by the instantaneous change of vehicle posture and the matching process of obstacles, but the error can be well controlled within a certain range. So it is feasible to solve the obstacle avoidance path planning in the winding road scene by using the curvilinear coordinate system.

     

  • loading
  • [1]
    李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Ke-qiang, DAI Yi-fan, LI Sheng-bo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14. (in Chinese). doi: 10.3969/j.issn.1674-8484.2017.01.001
    [2]
    LI Xiao-hui, SUN Zhen-ping, CAO Dong-pu, et al. Real-time trajectory planning for autonomous urban driving: framework, algorithms and verifications[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 740-753. doi: 10.1109/TMECH.2015.2493980
    [3]
    周伟, 李军. 自动驾驶车辆避障路径规划研究综述[J]. 汽车工程师, 2018(5): 55-58. doi: 10.3969/j.issn.1674-6546.2018.05.015

    ZHOU Wei, LI Jun. Research on obstacle avoidance path planning of automatic driving vehicle[J]. Auto Engineer, 2018(5): 55-58. (in Chinese). doi: 10.3969/j.issn.1674-6546.2018.05.015
    [4]
    AYAWLI B B K, CHELLALI R, APPIAH A Y, et al. An overview of nature-inspired, conventional, and hybrid methods of autonomous vehicle path planning[J]. Journal of Advanced Transportation, https://doi.org/10.1155/2018/8269698.
    [5]
    朱曼曼, 杜煜, 张永华, 等. 基于模糊逻辑的智能车局部路径规划[J]. 北京联合大学学报, 2016, 30(4): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLH201604005.htm

    ZHU Man-man, DU Yu, ZHANG Yong-hua, et al. Local path planning of smart car based on fuzzy logic method[J]. Journal of Beijing Union University, 2016, 30(4): 29-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLH201604005.htm
    [6]
    《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30(6): 1-197.

    Editorial Department of China Journal of Highway and Transport. Review on China's automotive engineering research progress: 2017[J]. China Journal of Highway and Transport, 2017, 30(6): 1-197. (in Chinese).
    [7]
    余卓平, 李奕姗, 熊璐. 无人车运动规划算法综述[J]. 同济大学学报(自然科学版), 2017, 45(8): 1150-1159. doi: 10.11908/j.issn.0253-374x.2017.08.008

    YU Zhuo-ping, LI Yi-shan, XIONG Lu. A review of the motion planning problem of autonomous vehicle[J]. Journal of Tongji University (Natural Science), 2017, 45(8): 1150-1159. (in Chinese). doi: 10.11908/j.issn.0253-374x.2017.08.008
    [8]
    EIHOSENY M, THARWAT A, HASSANIEN A E. Bezier curve based path planning in a dynamic field using modified genetic algorithm[J]. Journal of Computational Science, 2018, 25(5): 339-350.
    [9]
    GONZALEZ D, PEREZ J, MILANESV, et al. A review of motion planning techniques for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 17(4): 1135-1145.
    [10]
    陈成, 何玉庆, 卜春光, 等. 基于四阶贝塞尔曲线的无人车可行轨迹规划[J]. 自动化学报, 2015, 41(3): 486-496. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201503004.htm

    CHEN Cheng, HE Yu-qing, BU Chun-guang, et al. Feasible trajectory generation for autonomous vehicles based on quartic Bezier curve[J]. Acta Automatica Sinica, 2015, 41(3): 486-496. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201503004.htm
    [11]
    宋晓琳, 潘鲁彬, 曹昊天. 基于改进智能水滴算法的汽车避障局部路径规划[J]. 汽车工程, 2016, 38(2): 185-191, 228. doi: 10.3969/j.issn.1000-680X.2016.02.009

    SONG Xiao-lin, PAN Lu-bin, CAO Hao-tian. Local path planning for vehicle obstacle avoidance based on improved intelligent water drops algorithm[J]. Automotive Engineering, 2016, 38(2): 185-191, 228. (in Chinese). doi: 10.3969/j.issn.1000-680X.2016.02.009
    [12]
    宋晓琳, 周南, 黄正瑜, 等. 改进RRT在汽车避障局部路径规划中的应用[J]. 湖南大学学报(自然科学版), 2017, 44(4): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201704005.htm

    SONG Xiao-lin, ZHOU Nan, HUANG Zheng-yu, et al. An improved RRT algorithm of local path planning for vehicle collision avoidance[J]. Journal of Hunan University (Natural Sciences), 2017, 44(4): 30-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201704005.htm
    [13]
    安林芳, 陈涛, 成艾国, 等. 基于人工势场算法的智能车辆路径规划仿真[J]. 汽车工程, 2017, 39(12): 1451-1456. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201712015.htm

    AN Lin-fang, CHEN Tao, CHENG Ai-guo, et al. A simulation on the path planning of intelligent vehicles based on artificial potential field algorithm[J]. Automotive Engineering, 2017, 39(12): 1451-1456. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201712015.htm
    [14]
    王畅, 付锐, 张琼. 换道决策中的车辆速度估计模型[J]. 交通运输工程学报, 2015, 15(6): 83-91. doi: 10.3969/j.issn.1671-1637.2015.06.011

    WANG Chang, FU Rui, ZHANG Qiong. Speed estimation model during lane-changing decision[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 83-91. (in Chinese). doi: 10.3969/j.issn.1671-1637.2015.06.011
    [15]
    李红, 王文军, 李克强. 基于B样条理论的平行泊车路径规划[J]. 中国公路学报, 2016, 29(9): 143-151. doi: 10.3969/j.issn.1001-7372.2016.09.019

    LI Hong, WANG Wen-jun, LI Ke-qiang. Path planning for parallel parking based on B spline theory[J]. China Journal of Highway and Transport, 2016, 29(9): 143-151. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.09.019
    [16]
    徐美华, 张凯欣, 蒋周龙. 一种实时车道线偏离预警系统算法设计和实现[J]. 交通运输工程学报, 2016, 16(3): 149-158. doi: 10.3969/j.issn.1671-1637.2016.03.018

    XU Mei-hua, ZHANG Kai-xin, JIANG Zhou-long. Algorithm design and implementation for a real-time lane departure pre-warning system[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 149-158. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.03.018
    [17]
    SHENG Peng-cheng, MA Jin-gang, WANG Da-peng, et al. Intelligent trajectory planning model for electric vehicle in unknown environment[J]. Journal of Intelligent and Fuzzy Systems, 2019, 37: 397-407. doi: 10.3233/JIFS-179095
    [18]
    郭蓬, 吴学易, 戎辉, 等. 基于代价函数的无人驾驶汽车局部路径规划算法[J]. 中国公路学报, 2019, 32(6): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906009.htm

    GUO Peng, WU Xue-yi, RONG Hui, et al. Local path planning of driverless cars based on cost function[J]. China Journal of Highway and Transport, 2019, 32(6): 79-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906009.htm
    [19]
    LI Xiao-hui, SUN Zhen-ping, CAO Dong-pu, et al. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles[J]. Mechanical Systems and Signal Processing, 2017, 87: 118-137. doi: 10.1016/j.ymssp.2015.10.021
    [20]
    JIANG Yun-cheng, JIN Xiao-feng, XIONG Yan-fei, et al. A dynamic motion planning framework for autonomous driving in urban environments[J]. Electrical Engineering and Systems Science, 2019(9): 1-7.
    [21]
    CHU K, LEE M, SUNWOO M. Local path planning for off-road autonomous driving with avoidance of static obstacles[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1599-1616. doi: 10.1109/TITS.2012.2198214
    [22]
    BARFOOT T D, CLARK C M. Motion planning for formations of mobile robots[J]. Robotics and Autonomous Systems, 2004, 46(2): 65-78.
    [23]
    WALTON D J, MEEKD S, AlI J M. Planar G2 transition curves composed of cubic Bezier spiral segments[J]. Journal of Computational and Applied Mathematics, 2003, 157(2): 453-476. doi: 10.1016/S0377-0427(03)00435-7
    [24]
    SCHLECHTRIEMEN J, WABERSICH K P, KUHMERT K D. Wiggling through complex traffic: planning trajectories constrained by predictions[C]∥IEEE. 2016 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2006: 1-8.
    [25]
    YANG K, SUKKARIEH S. An analytical continuous-curvature path-smoothing algorithm[J]. IEEE Transactions on Robotics, 2010, 26(3): 561-568. doi: 10.1109/TRO.2010.2042990
    [26]
    SHU Si-hui, LIN Zi-zhi, DING Yun. B-spline curve approximation with nearly arc-length parameterization[J]. Applied Mechanics and Materials, 2014, 513-517: 3372-3376.
    [27]
    许小勇, 钟太勇. 三次样条插值函数的构造与Matlab实现[J]. 兵工自动化, 2006, 25(11): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD200611035.htm

    XU Xiao-yong, ZHONG Tai-yong. Construction and realization of cubic spline interpolation function[J]. Ordnance Industry Automation, 2006, 25(11): 76-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD200611035.htm
    [28]
    GUENTER B, PARENT R. Computing the arc length of parametric curves[J]. IEEE Computer Graphics and Applications, 1990, 10(3): 72-78.
    [29]
    盛鹏程, 曾小松, 罗新闻, 等. 基于贝叶斯概率估计的智能电动车动态目标避障算法[J]. 中国公路学报, 2019, 32(6): 96-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906011.htm

    SHENG Peng-cheng, ZENG Xiao-song, LUO Xin-wen, et al. Multi-objective dynamic obstacle avoidance algorithm of intelligent electric vehicles based on Bayesian theory[J]. China Journal of Highway and Transport, 2019, 32(6): 96-104. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906011.htm
    [30]
    GILL P E, KUNGURTSEV V, ROBINSON D P. A stabilized SQP method: superlinear convergence[J]. Mathematical Programming, 2017, 163(1/2): 369-410.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (910) PDF downloads(416) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return