Citation: | MOU Hao-lei, JIE Jiang, FENG Zhen-yu. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 17-39. doi: 10.19818/j.cnki.1671-1637.2020.03.002 |
[1] |
GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98: 106-123. doi: 10.1016/j.paerosci.2018.03.008
|
[2] |
WAIMER M, FESER T, SCHATROW P, et al. Crash concepts for CFRP transport aircraft—comparison of the traditional bend frame concept versus the developments in a tension absorbers concept[J]. International Journal of Crashworthiness, 2018, 23(2): 193-218. doi: 10.1080/13588265.2017.1341279
|
[3] |
GRANSDEN D I, ALDERLIESTEN R. Development of a finite element model for comparing metal and composite fuselage section drop testing[J]. International Journal of Crashworthiness, 2017, 22(4): 401-414. doi: 10.1080/13588265.2016.1273987
|
[4] |
LANKARANI H M, HOOPER S J. Application of computer-aided analysis tools for aircraft occupant and seat crashworthiness problems[J]. International Journal of Crashworthiness, 1999, 4(4): 433-448. doi: 10.1533/cras.1999.0117
|
[5] |
LYLE K H, JACKSON K E, FASANELLA E L. Simulation of aircraft landing gears with a nonlinear dynamic finite element code[J]. Journal of Aircraft, 2002, 39(1): 142-147. doi: 10.2514/2.2908
|
[6] |
JACHSON K E, FASANELLA E L. Crash simulation of vertical drop tests of two Boeing 737 fuselage sections[R]. Washington DC: FAA, 2002.
|
[7] |
RASSAIAN M. Virtual test and simulation[C]∥AIAA. AIAA Complex Aerospace Systems Exchange. Washington DC: AIAA, 2013: 1-25.
|
[8] |
HACHENBERG D, LAVINGE V, MAHE M. Crashworthiness of fuselage hybrid structure[C]∥FAA. 8th Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2016: 1-16.
|
[9] |
SENTHIL K, IQBAL M A, CHANDEL P S, et al. Study of the constitutive behavior of 7075-T651 aluminum alloy[J]. International Journal of Impact Engineering, 2017, 108: 171-190. doi: 10.1016/j.ijimpeng.2017.05.002
|
[10] |
OLIVARES G, ACOSTA J F, RAJU S. Crashworthiness evaluation of composite aircraft structures[C]//JAMS. JAMS 2013 Technical Review Meeting. Washington DC: JAMS, 2013: 1-25.
|
[11] |
SEIDTJ D. Plastic deformation and ductile fracture of 2024-T351 aluminum under various loading conditions[D]. Columbus: The Ohio State University, 2010.
|
[12] |
EFFELSBERG J, HAUFE A, FEUCHT M, et al. On parameter identification for the GISSMO damage model[C]//DYNAmore. 12th International LS-DYNA Users Conference. Dublin: DYNAmore, 2012: 1-10.
|
[13] |
JACKSON K E, FASANELLA E L. Crash simulation of verticle drop tests of two Boeing 737 fuselage sections[R]. Washington DC: FAA, 2000.
|
[14] |
LANGRAND B, DELETOMBE E, MARKIEWICZ E, et al. Identification of nonlinear dynamic behavior and failure for riveted joint assemblies[J]. Shock and Vibration, 2000, 7: 121-138. doi: 10.1155/2000/632896
|
[15] |
LANGRAND B, MARKIEWICZ E. Strain-rate dependence in spot welds: non-linear behaviour and failure in pure and combined modes I/II[J]. International Journal of Impact Engineering, 2010, 37(7): 792-805. doi: 10.1016/j.ijimpeng.2010.01.004
|
[16] |
SHOJI H, MIYAKI H, IWASAKI K, et al. Crashworthiness research on cabin structure at JAXA[C]//FAA. 5th Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2007: 1-26.
|
[17] |
LIU Xiao-chuan, XI Xu-long, BAI Chun-yu, et al. Dynamic response and failure mechanism of Ti-6AL-4V hi-lock bolts under combined tensile-shear loading[J]. International Journal of Impact Engineering, 2019, 131: 140-151. doi: 10.1016/j.ijimpeng.2019.04.025
|
[18] |
牟浩蕾, 赵一帆, 刘义, 等. 航空沉头铆钉动态加载试验及失效模式研究[J]. 航空科学技术, 2019, 30(4): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201904013.htm
MOU Hao-lei, ZHAO Yi-fan, LIU Yi, et al. Dynamic loading failure experiment and failure mode analysis of aeronautic countersunk rivets[J]. Aeronautical Science and Technology, 2019, 30(4): 69-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201904013.htm
|
[19] |
解江, 白春玉, 舒挽, 等. 航空铆钉动态加载失效实验[J]. 爆炸与冲击, 2017, 37(5): 879-886. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201705013.htm
XIE Jiang, BAI Chun-yu, SHU Wan, et al. Dynamic loading failure experiment of aeronautic rivet[J]. Explosion and Shock Waves, 2017, 37(5): 879-886. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201705013.htm
|
[20] |
殷俊清. 航空薄壁件铆接变形分析及预测研究[D]. 西安: 西北工业大学, 2015.
YIN Jun-qing. Study on riveting deformation and its prediction of aeronautical thin-walled components[D]. Xi'an: Northwestern Polytechnical University, 2015. (in Chinese).
|
[21] |
LEI Lei, HE Xiao-cong, ZHAO De-suo, et al. Clinch-bonded hybrid joining for similar and dissimilar copper alloy, aluminum alloy and galvanised steel sheets[J]. Thin-Walled Structures, 2018, 131: 393-403. doi: 10.1016/j.tws.2018.07.017
|
[22] |
MUCHA J, WITKOWSKI W. Mechanical behavior and failure of riveting joints in tensile and shear tests[J]. Strength of Materials, 2015, 47(5): 755-769. doi: 10.1007/s11223-015-9712-5
|
[23] |
张浩宇, 侯波, 何宇廷, 等. 航空复合材料-金属连接结构的拉伸性能及其渐进损伤[J]. 机械工程材料, 2017, 41(8): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201708020.htm
ZHANG Hao-yu, HOU Bo, HE Yu-ting, et al. Tensile property of aeronautical composite-metal joint structure and its progressive damage[J]. Materials for Mechanical Engineering, 2017, 41(8): 87-92. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201708020.htm
|
[24] |
CUI Jun-jia, DONG Dong-ying, ZHANG Xu, et al. Influence of thickness of composite layers on failure behaviors of carbon fiber reinforced plastics/aluminum alloy electromagnetic riveted lap joints under high-speed loading[J]. International Journal of Impact Engineering, 2018, 115: 1-9. doi: 10.1016/j.ijimpeng.2018.01.004
|
[25] |
MARANNANO G, ZUCCARELLO B. Numerical experimental analysis of hybrid double lap aluminum-CFRP joints[J]. Composites Part B: Engineering, 2015, 71: 28-39. doi: 10.1016/j.compositesb.2014.11.025
|
[26] |
CWIK T, IANNUCCI L, EFFENBERGER M. Pull-through performance of carbon fibre epoxy composites[J]. Composite Structures, 2012, 94: 3037-3042. doi: 10.1016/j.compstruct.2012.03.027
|
[27] |
黄庆概. 单搭接件力学性能研究[D]. 杭州: 浙江大学, 2016.
HUANG Qing-gai. Study on mechanical properties of single lap joints[D]. Hangzhou: Zhejiang University, 2016. (in Chinese).
|
[28] |
余小青. 复合材料双面搭接接头力学性能研究[D]. 南京: 南京航空航天大学, 2010.
YU Xiao-qing. The research on mechanical behaviors of composite double lap joints[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese).
|
[29] |
HEIMBS S, HOFFMANN M, WAIMER M, et al. Dynamic testing and modelling of composite fuselage frames and fasteners for aircraft crash simulations[J]. International Journal of Crashworthiness, 2013, 18(4): 406-422. doi: 10.1080/13588265.2013.801294
|
[30] |
MUCHA J, WITKOWSKI W. The clinching joints strength analysis in the aspects of changes in the forming technology and load conditions[J]. Thin-Walled Structures, 2014, 82: 55-66. doi: 10.1016/j.tws.2014.04.001
|
[31] |
汪存显, 高豪迈, 龚煦, 等. 航空铆钉连接件的抗冲击性能[J]. 航空学报, 2019, 40(1): 289-301. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201901020.htm
WANG Cun-xian, GAO Hao-mai, GONG Xu, et al. Impact responses of aeronautic riveting structures[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 289-301. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201901020.htm
|
[32] |
BALBUDHE S W, ZAVERI S R. Stress analysis of riveted lap joint[J]. International Journal of Mechanical Engineering and Robotics Research, 2013, 2(3): 137-143.
|
[33] |
MUCHA J, WITKOWSKI W. The experimental analysis of the double joint type change effect on the joint destruction process in uniaxial shearing test[J]. Thin-Walled Structures, 2013, 66: 39-49. doi: 10.1016/j.tws.2013.01.018
|
[34] |
TANG Yu-ling, ZHOU Zhen-gong, PAN Shi-dong, et al. Mechanical property and failure mechanism of 3D carbon-carbon braided composites bolted joints under unidirectional tensile loading[J]. Materials and Design, 2015, 65: 243-253. doi: 10.1016/j.matdes.2014.08.073
|
[35] |
LI Gang, SHI Guo-qin, BELLINGER N C. Residual stress/strain in three-row, countersunk, riveted lap joints[J]. Journal of Aircraft, 2007, 44(4): 1275-1285. doi: 10.2514/1.26748
|
[36] |
RABALAISC P. Analysis of bolt and rivet structural fasteners subjected to dynamic shear loadings[D]. College Station: Texas A & amp; amp; M University, 2015.
|
[37] |
SONNENSCHEIN U. Modelling of bolts under dynamic loads[C]∥DYNAmore. LS-DYNA Anwenderforum. Dublin: DYNAmore, 2008: 13-24.
|
[38] |
NARKHEDE S, LOKHANDE N, GANGANI B, et al. Bolted joint representation in LS-DYNA to model bolt pre-stress and bolt failure characteristic in crash simulation[C]//DYNAmore. 11th International LS-DYNA Users Conference. Dublin: DYNAmore, 2017: 11-19.
|
[39] |
RAMTEKEA L, NADGOUDA P B. Improving analysis accuracy by modeling rivets/bolts as solids in sheet metal structure[C]∥DYNAmore. 7th European LS-DYNA Conference. Dublin: DYNAmore, 2009: 1-8.
|
[40] |
周璐瑶. 基于耐撞性无铆钉铆接接头建模方法研究[D]. 长春: 吉林大学, 2014.
ZHOU Lu-yao. Study of finite element modeling technique for clinching joints based on crashworthiness[D]. Changchun: Jilin University, 2014. (in Chinese).
|
[41] |
S∅NSTAB∅J K, MORIN D, LANGSETH M. Macroscopic modelling of flow-drill screw connections in thin-walled aluminum structures[J]. Thin-Walled Structures, 2016, 105: 185-206. doi: 10.1016/j.tws.2016.04.013
|
[42] |
PREVITALI F, ANGHILERI M, CASTELLETTI L M L, et al. Combined numerical/experimental approach for rivet strength assessment[C]∥DYNAmore. 7th European LS-DYNA Conference. Dublin: DYNAmore, 2009: 1-9.
|
[43] |
ZENG Chao, TIAN Wei, LIAO Wen-he. Improved model concerning driven rivet head dimensions based on material flow characteristics[J]. Journal of Aircraft, 2016, 53(4): 1179-1184.
|
[44] |
TERAMOTO S S, ALVES M. Buckling transition of axially impacted open shells[J]. International Journal of Impact Engineering, 2004, 30: 1241-1260. doi: 10.1016/j.ijimpeng.2004.06.001
|
[45] |
BISAGNI C. Experimental investigation of the collapse modes and energy absorption characteristics of composite tubes[J]. International Journal of Crashworthiness, 2009, 14(4): 365-378. doi: 10.1080/13588260902792954
|
[46] |
解江, 张雪晗, 苏璇, 等. 铺层顺序对复合材料薄壁圆管轴向压溃吸能特性的影响研究[J]. 工程力学, 2018, 35(6): 231-239. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806028.htm
XIE Jiang, ZHANG Xue-han, SU Xuan, et al. Influence of layer sequence on energy absorption characteristics of thin-walled composite circular tubes under axial compression[J]. Engineering Mechanics, 2018, 35(6): 231-239. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806028.htm
|
[47] |
牟浩蕾, 张雪晗, 宋东方, 等. 复合材料层合结构破坏机理及压溃吸能特性分析[J]. 振动与冲击, 2018, 37(22): 194-200, 213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201822029.htm
MOU Hao-lei, ZHANG Xue-han, SONG Dong-fang, et al. Damage mechanism and energy-absorbing characteristics of composite laminated structures[J]. Journal of Vibration and Shock, 2018, 37(22): 194-200, 213. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201822029.htm
|
[48] |
MAMALIS A G, ROBINSON M, MANOLAKOS D E, et al. Crashworthy capability of composite material structures[J]. Composite Structures, 1997, 37(2): 109-134. doi: 10.1016/S0263-8223(97)80005-0
|
[49] |
FARLEY G L, JONES R M. Energy-absorption capability of composite tubes and beams[R]. Washington DC: NASA, 1989.
|
[50] |
HULL D. A unified approach to progressive crushing of fibre-reinforced composite tubes[J]. Composites Science and Technology, 1991, 40(4): 377-421. doi: 10.1016/0266-3538(91)90031-J
|
[51] |
GUPTA N K, VELMURUGAN R, GUPTA S K. An analysis of axial crushing of composite tubes[J]. Journal of Composite Materials, 1997, 31(13): 1262-1286. doi: 10.1177/002199839703101301
|
[52] |
MOU Hao-lei, XIE Jiang, ZOU Jun, et al. Experimental researches on failure and energy absorption of composite laminated thin-walled structures[J]. Journal of Composite Materials, 2020, 1-16.
|
[53] |
FENG Zhen-yu, XIE Jiang, SONG Shan-shan, et al. The failure mechanism and energy-absorbing characteristics of composite thin-walled C-channels subject to low-speed axial compression[J]. Journal of Composite Materials, 2019, 53(16): 2249-2259. doi: 10.1177/0021998319826337
|
[54] |
FERABOLI P, SPETZLER M. Design of energy-absorbing CFRP stanchions for the cargo floor structure of transport category airplanes[C]//JAMS. JAMS 2013 Technical Review Meeting. Washington DC: JAMS, 2013: 1-21.
|
[55] |
OSTLER D, BLESSING E, PERL M, et al. A building block approach for crashworthiness testing of composites[C]//JAMS. JAMS 2019 Technical Review Meeting. Washington DC: JAMS, 2019: 1-30.
|
[56] |
JACKSON A, DUTTON S, GUNNION A J, et al. Investigation into laminate design of open carbon-fibre/epoxy sections by quasi-static and dynamic crushing[J]. Composite Structures, 2011, 93(10): 2646-2654. doi: 10.1016/j.compstruct.2011.04.032
|
[57] |
DAVID M, JOHNSON A F, VOGGENREITER H. Analysis of crushing response of composite crashworthy structures[J]. Applied Composite Materials, 2013, 20: 773-787. doi: 10.1007/s10443-012-9301-8
|
[58] |
FERABOLI P. Development of a corrugated test specimen for composite materials energy absorption[J]. Journal of Composite Materials, 2008, 42: 229-256. doi: 10.1177/0021998307086202
|
[59] |
SOKOLINSKY V S, INDERMUEHLE K C, HURTADO J A. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42: 1119-1126. doi: 10.1016/j.compositesa.2011.04.017
|
[60] |
LAU S T W, SAID M R, YAAKOB M Y. On the effect of geometrical designs and failure modes in composite axial crushing: a literature review[J]. Composite Structure, 2012, 94: 803-812. doi: 10.1016/j.compstruct.2011.09.013
|
[61] |
CHIU L N S, FALZON B G, BOMAN R, et al. Finite element modelling of composite structures under crushing load[J]. Composite Structure, 2015, 131: 215-228. doi: 10.1016/j.compstruct.2015.05.008
|
[62] |
REN Yi-ru, JIANG Hong-yong, LIU Zhi-hui. Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes[J]. International Journal of Mechanical Sciences, 2019, 157/158: 1-12. doi: 10.1016/j.ijmecsci.2019.04.024
|
[63] |
LUO Hai-bo, YAN Ying, ZHANG Tai-hua, et al. Progressive failure numerical simulation and experimental verification of carbon-fiber composite corrugated beams under dynamic[J]. Polymer Testing, 2017, 63: 12-24. doi: 10.1016/j.polymertesting.2017.08.004
|
[64] |
SIROMANI D, HENDERSON G, MIKITA D, et al. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 25-35. doi: 10.1016/j.compositesa.2014.04.019
|
[65] |
ESHKOOR R A, OSHKOVR S A, SULONG A B, et al. Effect of trigger configuration on the crashworthiness characteristics of natural silk epoxy composite tubes[J]. Composites Part B: Engineering, 2013, 55: 5-10. doi: 10.1016/j.compositesb.2013.05.022
|
[66] |
HEIMBS S, STROBL F, MIDDENDORF P. Integration of a composite crash absorber in aircraft fuselage vertical struts[J]. International Journal of Vehicle Structures and Systems, 2011, 3(2): 87-95.
|
[67] |
COLLINS J S, JOHNSON E R. Static and dynamic response of graphite-epoxy curved frames[J]. Journal of Composite Materials, 1992, 26(6): 792-803. doi: 10.1177/002199839202600602
|
[68] |
WAIMER M. Development of a kinematics model for the assessment of global crash scenarios of a composite transport aircraft fuselage[R]. Cologne: DLR, 2013.
|
[69] |
BUSSADORI B P, SCHUFFENHAUER K, SCATTINA A. Modelling of CFRP crushing structures in explicit crash analysis[J]. Composites Part B: Engineering, 2014, 60: 725-735. doi: 10.1016/j.compositesb.2014.01.020
|
[70] |
MOU Hao-lei, XIE Jiang, SU Xuan, et al. Crashworthiness experiment and simulation analysis of composite thin-walled circular tubes under axial crushing[J]. Mechanics of Composite Materials, 2019, 55(1): 121-134. doi: 10.1007/s11029-019-09797-x
|
[71] |
冯振宇, 周建, 张雪晗, 等. 复合材料薄壁圆管压溃吸能机理分析及层叠壳建模方法研究[J]. 振动与冲击, 2017, 36(23): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201723039.htm
FENG Zhen-yu, ZHOU Jian, ZHANG Xue-han, et al. Mechanism analysis and laminated shell modeling for crushing energy absorption of composite thin-walled circular tubes[J]. Journal of Vibration and Shock, 2017, 36(23): 268-275. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201723039.htm
|
[72] |
SIROMANI D, AWERBUCH J, TAN T M. Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression[J]. Composites Part B: Engineering, 2014, 64: 50-58. doi: 10.1016/j.compositesb.2014.04.008
|
[73] |
解江, 马骢瑶, 周建, 等. 复合材料机身C型柱准静态压溃仿真及失效模式[J]. 航空材料学报, 2017, 37(2): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201702011.htm
XIE Jiang, MA Cong-yao, ZHOU Jian, et al. Quasi-static crushing simulation research and failure mode analysis of composite thin-walled C-channel specimen[J]. Journal of Aeronautical Materials, 2017, 37(2): 73-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201702011.htm
|
[74] |
MOU Hao-lei, SU Xuan, XIE Jiang, et al. Parametric analysis of composite sinusoidal specimens under quasi-static crushing[J]. The Aeronautical Journal, 2018, 122(1254): 1244-1262. doi: 10.1017/aer.2018.64
|
[75] |
HADAVINIA H, GHASEMNEJAD H. Effects of mode-Ⅰ and mode-Ⅱ interlaminar fracture toughness on the energy absorption of CFRP twill/weave composite box sections[J]. Composite Structures, 2009, 89: 303-314. doi: 10.1016/j.compstruct.2008.08.004
|
[76] |
PALANIVELU S, VAN PAEPEGEM W, DEGRIECK J, et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: central delamination and triggering modelling[J]. Polymer Testing, 2010, 29: 729-741. doi: 10.1016/j.polymertesting.2010.05.010
|
[77] |
WAIMER M, SIEMANN M H, FESER T. Simulation of CFRP components subjected to dynamic crash loads[J]. International Journal of Impact Engineering, 2017, 101: 115-131. doi: 10.1016/j.ijimpeng.2016.11.011
|
[78] |
解江, 宋山山, 宋东方, 等. 复合材料C型柱轴压失效分析的层合壳建模方法[J]. 航空学报, 2019, 40(2): 127-139. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201902013.htm
XIE Jiang, SONG Shan-shan, SONG Dong-fang, et al. Stacked shell modeling method for failure analysis of composite C-channels subject to axial compression[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 127-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201902013.htm
|
[79] |
FERABOLI P, WADE B, DELEO F, et al. LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42: 1809-1825. doi: 10.1016/j.compositesa.2011.08.004
|
[80] |
牟浩蕾, 邹田春, 陈艳芬, 等. 复合材料波纹板准静态压溃仿真与试验及材料模型参数分析[J]. 机械科学与技术, 2015, 34(4): 618-622. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201504027.htm
MOU Hao-lei, ZOU Tian-chun, CHEN Yan-fen, et al. Experiment and simulation of composite corrugated plate under quasi-static crushing and analysis of material model parameters[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(4): 618-622. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201504027.htm
|
[81] |
WADE B, FERABOLI P. Composite damage material modeling for crash simulation: MAT54 & amp; amp; the efforts of the CMH-17 numerical round robin[C]//JAMS. JAMS 2014 Technical Review Meeting. Washington DC: JAMS, 2014: 1-26.
|
[82] |
BUSSADORI B P, SCHUDDENHAUER K, SCATTINA A. Modelling of CFRP crushing structures in explicit crash analysis[J]. Composites Part B: Engineering, 2014, 60: 725-735. doi: 10.1016/j.compositesb.2014.01.020
|
[83] |
RICCIO A, RAIMONDO A, DI CAPRIO F, et al. Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system[J]. Composites Part B: Engineering, 2018, 150: 93-103. doi: 10.1016/j.compositesb.2018.05.044
|
[84] |
JIANG Hong-yong, REN Yi-ru, LIU Zhi-hui, et al. Multi-scale analysis for mechanical properties of fiber bundle and damage characteristics of 2D triaxially braided composite panel under shear loading[J]. Thin-Walled Structures, 2018, 132: 276-286. doi: 10.1016/j.tws.2018.08.022
|
[85] |
REN Yi-ru, ZHANG Song-jun, JIANG Hong-yong, et al. Meso-scale progressive damage behavior characterization of triaxial braided composites under quasi-static tensile load[J]. Applied Composite Materials, 2018, 25: 335-352. doi: 10.1007/s10443-017-9623-7
|
[86] |
ZHANG Chao, MAO Chun-jian, CURIEL-SOSA J L, et al. Meso-scale finite element simulations of 3D braided textile composites: effects of force loading modes[J]. Applied Composite Materials, 2018, 25: 823-841. doi: 10.1007/s10443-018-9728-7
|
[87] |
JACKSON K E, FASANELLA E L, KELLAS S. Development of a scale model composite fuselage concept for improved crashworthiness[J]. Journal of Aircraft, 2001, 38(1): 95-103. doi: 10.2514/2.2739
|
[88] |
RICCIO A, SAPUTO S, SELLITTO A, et al. On the crashworthiness behaviour of a composite fuselage sub-floor component[J]. Composite Structures, 2020, 234: 1-14.
|
[89] |
WIGGENRAAD J F M, SMICHIELSEN A L P J, SANTORO D, et al. Development of a crashworthy composite fuselage concept for a commuter aircraft[R]. Amsterdam: NLR, 2001.
|
[90] |
MOU Hao-lei, ZOU Tian-chun, FENG Zhen-yu, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens[J]. Latin American Journal of Solids and Structures, 2016, 13(6): 1186-1202. doi: 10.1590/1679-78252446
|
[91] |
DELSART D, PORTEMONT G, WAIMER M. Crash testing of a CFRP commercial aircraft sub-cargo fuselage section[J]. Procedia Structural Integrity, 2016, 2: 2198-2205. doi: 10.1016/j.prostr.2016.06.275
|
[92] |
CAPRIO F D, IGNARRA M, MARULO F, et al. Design of composite stanchions for the cargo subfloor structure of a civil aircraft[J]. Procedia Engineering, 2016, 167: 88-96. doi: 10.1016/j.proeng.2016.11.673
|
[93] |
冯振宇, 解江, 李恒晖, 等. 大飞机货舱地板下部结构有限元建模与适坠性分析[J]. 航空学报, 2019, 40(2): 115-126. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201902012.htm
FENG Zhen-yu, XIE Jiang, LI Heng-hui, et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 115-126. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201902012.htm
|
[94] |
冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性研究[J]. 航空学报, 2019, 40(9): 208-220. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201909015.htm
FENG Zhen-yu, CHENG Kun, ZHAO Yi-fan, et al. Study on impact energy absorption characteristics of the lower structure of typical cargo floor of transportation aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 208-220. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201909015.htm
|
[95] |
FASANELLA E L, WIDMAYER E, ROBINSON M P. Structural analysis of the controlled impact demonstration of a jet transport airplane[J]. Journal of Aircraft, 1987, 24(4): 274-280.
|
[96] |
FASANELLA E L, ALFARO-BOU E, HAYDUK R J. Impact data from a transport aircraft during a controlled impact demonstration[R]. Washington DC: NASA, 1986.
|
[97] |
WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage section located forward of the wing[R]. Washington DC: NASA, 1983.
|
[98] |
FASANELLA E L, ALFARO-BOU E. Vertical drop test of a transport fuselage section located aft of the wing[R]. Washington DC: NASA, 1986.
|
[99] |
WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage center section including the wheel wells[R]. Washington DC: NASA, 1983.
|
[100] |
JACKSON K E, LITTELL J D, ANNETT M S, et al. Finite element simulations of two vertical drop tests of F-28 fuselage sections[R]. Washington DC: NASA, 2018.
|
[101] |
LITTELL J D. A summary of results from two full-scale F28 fuselage section drop tests[R]. Washington DC: NASA, 2018.
|
[102] |
LOGUE T V, MCGUIRE R J, REINHARDT J W, et al. Vertical drop test of a narrow-body fuselage section with overhead stowage bins and auxiliary fuel tank system on board[R]. Washington DC: FAA, 1995.
|
[103] |
ABRAMOWITZ A, SMITH T G, VU T. Vertical drop test of a narrow-body transport fuselage section with a conformable auxiliary fuel tank onboard[R]. Washington DC: FAA, 2000.
|
[104] |
ABRAMOWITZ A, SMITH T G, VU T, et al. Vertical drop test of an ATR42-300 airplane[R]. Washington DC: FAA, 2006.
|
[105] |
OLIVARES G. Crashworthiness certification by analysis[C]//JAMS. JAMS 2018 Technical Review Meeting. Washington DC: JAMS, 2018: 1-60.
|
[106] |
HASHEMI S M R, WALTON A C. A systematic approach to aircraft crashworthiness and impact surface material models[J]. Journal of Aerospace Engineering, 2000, 214(5): 265-280.
|
[107] |
RICCIO A, SAPUTO S, SELLITTO A, et al. An insight on the crashworthiness behavior of a full-scale composite fuselage section at different impact angles[J]. Aerospace, 2019, 72(6): 1-14.
|
[108] |
KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[R]. New York: SAE International, 2003.
|
[109] |
刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9): 2130-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201309015.htm
LIU Xiao-chuan, GUO Jun, SUN Xia-sheng, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130-2140. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201309015.htm
|
[110] |
刘小川, 周苏枫, 马君峰, 等. 民机客舱下部吸能结构分析与试验相关性研究[J]. 航空学报, 2012, 33(12): 2202-2210. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201212007.htm
LIU Xiao-chuan, ZHOU Su-feng, MA Jun-feng, et al. Correlation study of crash analysis and test of civil airplane sub-cabin energy absorption structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2202-2210. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201212007.htm
|
[111] |
WAIMER M, KOHLGRÜBER D, HACHENBERG D, et al. The kinematics model-a numerical method for the development of a crashworthy composite fuselage design of transport aircraft[C]//FAA. 6th Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2010: 1-32.
|
[112] |
KINDERVATER C M, KOHLGRUBER D, JOHNSON A. Composite vehicle structural crashworthiness—a status of design methodology and numerical simulation techniques[J]. International Journal of Crashworthiness, 1999, 4(2): 213-230.
|
[113] |
ZOU Tian-chun, MOU Hao-lei, FENG Zhen-yu. Research on effects of oblique struts on crashworthiness of composite fuselage sections[J]. Journal of Aircraft, 2012, 49(6): 2059-2063.
|
[114] |
ZHU Xian-fei, FENG Yun-wen, XUE Xiao-feng, et al. Evaluate the crashworthiness response of an aircraft fuselage section with luggage contained in the cargo hold[J]. International Journal of Crashworthiness, 2017, 22(4): 347-364.
|
[115] |
ADAMS A, LANKARANI H M. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness[J]. International Journal of Crashworthiness, 2003, 8(4): 401-413.
|
[116] |
MENG Fan-xing, ZHOU Qin, YANG Jia-ling. Improvement of crashworthiness behaviour for simplified structural models of aircraft fuselage[J]. International Journal of Crashworthiness, 2009, 14(1): 83-97.
|
[117] |
FASANELLA E L, JACKSON K E. Crash simulation of a vertical drop test of a B737 fuselage section with auxiliary fuel tank[C]//FAA. 3rd Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2001: 1-19.
|
[118] |
SCHATROW P, WAIMER M. Crash concept for composite transport aircraft using mainly tensile and compressive absorption mechanisms[J]. CEAS Aeronautical Journal, 2016, 7(3): 471-482.
|
[119] |
SCHATROW P, WAIMER M. Investigation of a crash concept for CFRP transport aircraft based on tension absorption[J]. International Journal of Crashworthiness, 2014, 19(5): 524-539.
|
[120] |
DELETOMBE E, DELSART D, KOHLGRÜBER D, et al. Improvement of numerical methods for crash analysis in future composite aircraft design[J]. Aerospace Science and Technology, 2000, 4(3): 189-199.
|
[121] |
解江, 冯振宇, 赵彦强, 等. 含随机不确定参数复合材料薄壁结构吸能特性评估方法研究[J]. 振动与冲击, 2015, 34(22): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201522019.htm
XIE Jiang, FENG Zhen-yu, ZHAO Yan-qiang, et al. Evaluation method based on probability for energy-absorbing composite structures with uncertain parameters[J]. Journal of Vibration and Shock, 2015, 34(22): 109-114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201522019.htm
|
[122] |
XIE Jiang, MOU Hao-lei, SU Xuan, et al. Uncertain evaluation of crashworthiness of thin-walled composite structures[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(8): 1238-1248.
|
[123] |
郑建强, 向锦武, 罗漳平, 等. 民机机身下部结构耐撞性优化设计[J]. 航空学报, 2012, 33(4): 640-649. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201204009.htm
ZHENG Jian-qiang, XIANG Jin-wu, LUO Zhang-ping, et al. Crashworthiness optimization of civil aircraft subfloor structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 640-649. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201204009.htm
|
[124] |
REN Yi-ru, XIANG Jin-wu. Crashworthiness uncertainty analysis of typical civil aircraft based on Box-Behnken method[J]. Chinese Journal of Aeronautics, 2014, 27(3): 550-557.
|
[125] |
LYLE K H, STOCKWELL A E, HARDY R C. Application of probability methods to assess airframe crash modeling uncertainty[J]. Journal of Aircraft, 2007, 44(5): 1568-1573.
|