MOU Hao-lei, JIE Jiang, FENG Zhen-yu. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 17-39. doi: 10.19818/j.cnki.1671-1637.2020.03.002
Citation: MOU Hao-lei, JIE Jiang, FENG Zhen-yu. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 17-39. doi: 10.19818/j.cnki.1671-1637.2020.03.002

Research on crashworthiness of civil aircraft fuselage structures

doi: 10.19818/j.cnki.1671-1637.2020.03.002
Funds:

Aeronautical Science Foundation of China 2017ZD67002

Tianjin Municipal Education Commission Scientific Research Project 2019KJ135

Special Foundation for Basie Scientific Research of Central Colleges of China 3122019162

More Information
  • Author Bio:

    MOU Hao-lei(1987-), male, assistant researcher, mhl589@163.com

  • Corresponding author: FENG Zhen-yu(1966-), male, professor, PhD, caucstructure@163.com
  • Received Date: 2020-01-27
  • Publish Date: 2020-06-25
  • The civil aircraft fuselage structure was considered as the study objective, according to the different levels of crashworthy building block approach, including coupons, elements, details, sub-components, components, and full-scale aircraft, the crashworthy tests and numerical simulation of civil aircraft fuselage structures were elaborated. The crashworthy researches on sub-components(sub-cargo fuselage sections) and components(fuselage sections) in the world were summarized, the crash failure modes of fuselage section were compared and analyzed, and the crashworthy design methods of fuselage sections were described. The crashworthy compliance verification and evaluation methods of civil aircraft fuselage structures were elaborated, and the prospect of future researches on the crashworthy design, verification and certification of civil aircraft fuselage structures was proposed. Research result shows that the failures of materials and connection structures are the main failure modes during the crash process of civil aircraft fuselage section, the material constitutive model and the connection structure failure model can significantly affect the crashworthy simulation analysis. The more accurate material constitutive models and connection structure modeling techniques need to be developed to improve the dynamic simulation maturity. The crashworthiness can be effectively improved by arranging the energy-absorbing structures in the fuselage structure, the more efficient and stable design scheme and layout of energy-absorbing structures need to be developed to maximize the crashworthy performance. The tests and simulation analysis of details and sub-components can provide the innovative solutions to evaluate the failure modes, damage mechanisms and energy-absorbing capabilities, and the high-precision test technology and finite element simulation analysis technology need to be developed to effectively support the crashworthy design, verification, and certification for the components and full-scale aircraft. The crashworthy evaluation methods and optimization methods with uncertain parameters need to be developed to avoid additional tests and later configuration changes. The crashworthy building block approach can be systematically conducted to effectively support the finite element model verification and evaluation, and the finite element simulation technology verified through the crashworthy building block approach needs to be developed to reduce the crashworthy verification time and cost, and to guide the crashworthy test design and structural design.

     

  • loading
  • [1]
    GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98: 106-123. doi: 10.1016/j.paerosci.2018.03.008
    [2]
    WAIMER M, FESER T, SCHATROW P, et al. Crash concepts for CFRP transport aircraft—comparison of the traditional bend frame concept versus the developments in a tension absorbers concept[J]. International Journal of Crashworthiness, 2018, 23(2): 193-218. doi: 10.1080/13588265.2017.1341279
    [3]
    GRANSDEN D I, ALDERLIESTEN R. Development of a finite element model for comparing metal and composite fuselage section drop testing[J]. International Journal of Crashworthiness, 2017, 22(4): 401-414. doi: 10.1080/13588265.2016.1273987
    [4]
    LANKARANI H M, HOOPER S J. Application of computer-aided analysis tools for aircraft occupant and seat crashworthiness problems[J]. International Journal of Crashworthiness, 1999, 4(4): 433-448. doi: 10.1533/cras.1999.0117
    [5]
    LYLE K H, JACKSON K E, FASANELLA E L. Simulation of aircraft landing gears with a nonlinear dynamic finite element code[J]. Journal of Aircraft, 2002, 39(1): 142-147. doi: 10.2514/2.2908
    [6]
    JACHSON K E, FASANELLA E L. Crash simulation of vertical drop tests of two Boeing 737 fuselage sections[R]. Washington DC: FAA, 2002.
    [7]
    RASSAIAN M. Virtual test and simulation[C]∥AIAA. AIAA Complex Aerospace Systems Exchange. Washington DC: AIAA, 2013: 1-25.
    [8]
    HACHENBERG D, LAVINGE V, MAHE M. Crashworthiness of fuselage hybrid structure[C]∥FAA. 8th Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2016: 1-16.
    [9]
    SENTHIL K, IQBAL M A, CHANDEL P S, et al. Study of the constitutive behavior of 7075-T651 aluminum alloy[J]. International Journal of Impact Engineering, 2017, 108: 171-190. doi: 10.1016/j.ijimpeng.2017.05.002
    [10]
    OLIVARES G, ACOSTA J F, RAJU S. Crashworthiness evaluation of composite aircraft structures[C]//JAMS. JAMS 2013 Technical Review Meeting. Washington DC: JAMS, 2013: 1-25.
    [11]
    SEIDTJ D. Plastic deformation and ductile fracture of 2024-T351 aluminum under various loading conditions[D]. Columbus: The Ohio State University, 2010.
    [12]
    EFFELSBERG J, HAUFE A, FEUCHT M, et al. On parameter identification for the GISSMO damage model[C]//DYNAmore. 12th International LS-DYNA Users Conference. Dublin: DYNAmore, 2012: 1-10.
    [13]
    JACKSON K E, FASANELLA E L. Crash simulation of verticle drop tests of two Boeing 737 fuselage sections[R]. Washington DC: FAA, 2000.
    [14]
    LANGRAND B, DELETOMBE E, MARKIEWICZ E, et al. Identification of nonlinear dynamic behavior and failure for riveted joint assemblies[J]. Shock and Vibration, 2000, 7: 121-138. doi: 10.1155/2000/632896
    [15]
    LANGRAND B, MARKIEWICZ E. Strain-rate dependence in spot welds: non-linear behaviour and failure in pure and combined modes I/II[J]. International Journal of Impact Engineering, 2010, 37(7): 792-805. doi: 10.1016/j.ijimpeng.2010.01.004
    [16]
    SHOJI H, MIYAKI H, IWASAKI K, et al. Crashworthiness research on cabin structure at JAXA[C]//FAA. 5th Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2007: 1-26.
    [17]
    LIU Xiao-chuan, XI Xu-long, BAI Chun-yu, et al. Dynamic response and failure mechanism of Ti-6AL-4V hi-lock bolts under combined tensile-shear loading[J]. International Journal of Impact Engineering, 2019, 131: 140-151. doi: 10.1016/j.ijimpeng.2019.04.025
    [18]
    MOU Hao-lei, ZHAO Yi-fan, LIU Yi, et al. Dynamic loading failure experiment and failure mode analysis of aeronautic countersunk rivets[J]. Aeronautical Science and Technology, 2019, 30(4): 69-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201904013.htm
    [19]
    XIE Jiang, BAI Chun-yu, SHU Wan, et al. Dynamic loading failure experiment of aeronautic rivet[J]. Explosion and Shock Waves, 2017, 37(5): 879-886. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201705013.htm
    [20]
    YIN Jun-qing. Study on riveting deformation and its prediction of aeronautical thin-walled components[D]. Xi'an: Northwestern Polytechnical University, 2015. (in Chinese).
    [21]
    LEI Lei, HE Xiao-cong, ZHAO De-suo, et al. Clinch-bonded hybrid joining for similar and dissimilar copper alloy, aluminum alloy and galvanised steel sheets[J]. Thin-Walled Structures, 2018, 131: 393-403. doi: 10.1016/j.tws.2018.07.017
    [22]
    MUCHA J, WITKOWSKI W. Mechanical behavior and failure of riveting joints in tensile and shear tests[J]. Strength of Materials, 2015, 47(5): 755-769. doi: 10.1007/s11223-015-9712-5
    [23]
    ZHANG Hao-yu, HOU Bo, HE Yu-ting, et al. Tensile property of aeronautical composite-metal joint structure and its progressive damage[J]. Materials for Mechanical Engineering, 2017, 41(8): 87-92. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201708020.htm
    [24]
    CUI Jun-jia, DONG Dong-ying, ZHANG Xu, et al. Influence of thickness of composite layers on failure behaviors of carbon fiber reinforced plastics/aluminum alloy electromagnetic riveted lap joints under high-speed loading[J]. International Journal of Impact Engineering, 2018, 115: 1-9. doi: 10.1016/j.ijimpeng.2018.01.004
    [25]
    MARANNANO G, ZUCCARELLO B. Numerical experimental analysis of hybrid double lap aluminum-CFRP joints[J]. Composites Part B: Engineering, 2015, 71: 28-39. doi: 10.1016/j.compositesb.2014.11.025
    [26]
    CWIK T, IANNUCCI L, EFFENBERGER M. Pull-through performance of carbon fibre epoxy composites[J]. Composite Structures, 2012, 94: 3037-3042. doi: 10.1016/j.compstruct.2012.03.027
    [27]
    HUANG Qing-gai. Study on mechanical properties of single lap joints[D]. Hangzhou: Zhejiang University, 2016. (in Chinese).
    [28]
    YU Xiao-qing. The research on mechanical behaviors of composite double lap joints[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese).
    [29]
    HEIMBS S, HOFFMANN M, WAIMER M, et al. Dynamic testing and modelling of composite fuselage frames and fasteners for aircraft crash simulations[J]. International Journal of Crashworthiness, 2013, 18(4): 406-422. doi: 10.1080/13588265.2013.801294
    [30]
    MUCHA J, WITKOWSKI W. The clinching joints strength analysis in the aspects of changes in the forming technology and load conditions[J]. Thin-Walled Structures, 2014, 82: 55-66. doi: 10.1016/j.tws.2014.04.001
    [31]
    WANG Cun-xian, GAO Hao-mai, GONG Xu, et al. Impact responses of aeronautic riveting structures[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 289-301. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201901020.htm
    [32]
    BALBUDHE S W, ZAVERI S R. Stress analysis of riveted lap joint[J]. International Journal of Mechanical Engineering and Robotics Research, 2013, 2(3): 137-143.
    [33]
    MUCHA J, WITKOWSKI W. The experimental analysis of the double joint type change effect on the joint destruction process in uniaxial shearing test[J]. Thin-Walled Structures, 2013, 66: 39-49. doi: 10.1016/j.tws.2013.01.018
    [34]
    TANG Yu-ling, ZHOU Zhen-gong, PAN Shi-dong, et al. Mechanical property and failure mechanism of 3D carbon-carbon braided composites bolted joints under unidirectional tensile loading[J]. Materials and Design, 2015, 65: 243-253. doi: 10.1016/j.matdes.2014.08.073
    [35]
    LI Gang, SHI Guo-qin, BELLINGER N C. Residual stress/strain in three-row, countersunk, riveted lap joints[J]. Journal of Aircraft, 2007, 44(4): 1275-1285. doi: 10.2514/1.26748
    [36]
    RABALAISC P. Analysis of bolt and rivet structural fasteners subjected to dynamic shear loadings[D]. College Station: Texas A & amp; amp; M University, 2015.
    [37]
    SONNENSCHEIN U. Modelling of bolts under dynamic loads[C]∥DYNAmore. LS-DYNA Anwenderforum. Dublin: DYNAmore, 2008: 13-24.
    [38]
    NARKHEDE S, LOKHANDE N, GANGANI B, et al. Bolted joint representation in LS-DYNA to model bolt pre-stress and bolt failure characteristic in crash simulation[C]//DYNAmore. 11th International LS-DYNA Users Conference. Dublin: DYNAmore, 2017: 11-19.
    [39]
    RAMTEKEA L, NADGOUDA P B. Improving analysis accuracy by modeling rivets/bolts as solids in sheet metal structure[C]∥DYNAmore. 7th European LS-DYNA Conference. Dublin: DYNAmore, 2009: 1-8.
    [40]
    ZHOU Lu-yao. Study of finite element modeling technique for clinching joints based on crashworthiness[D]. Changchun: Jilin University, 2014. (in Chinese).
    [41]
    S∅NSTAB∅J K, MORIN D, LANGSETH M. Macroscopic modelling of flow-drill screw connections in thin-walled aluminum structures[J]. Thin-Walled Structures, 2016, 105: 185-206. doi: 10.1016/j.tws.2016.04.013
    [42]
    PREVITALI F, ANGHILERI M, CASTELLETTI L M L, et al. Combined numerical/experimental approach for rivet strength assessment[C]∥DYNAmore. 7th European LS-DYNA Conference. Dublin: DYNAmore, 2009: 1-9.
    [43]
    ZENG Chao, TIAN Wei, LIAO Wen-he. Improved model concerning driven rivet head dimensions based on material flow characteristics[J]. Journal of Aircraft, 2016, 53(4): 1179-1184.
    [44]
    TERAMOTO S S, ALVES M. Buckling transition of axially impacted open shells[J]. International Journal of Impact Engineering, 2004, 30: 1241-1260. doi: 10.1016/j.ijimpeng.2004.06.001
    [45]
    BISAGNI C. Experimental investigation of the collapse modes and energy absorption characteristics of composite tubes[J]. International Journal of Crashworthiness, 2009, 14(4): 365-378. doi: 10.1080/13588260902792954
    [46]
    XIE Jiang, ZHANG Xue-han, SU Xuan, et al. Influence of layer sequence on energy absorption characteristics of thin-walled composite circular tubes under axial compression[J]. Engineering Mechanics, 2018, 35(6): 231-239. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806028.htm
    [47]
    MOU Hao-lei, ZHANG Xue-han, SONG Dong-fang, et al. Damage mechanism and energy-absorbing characteristics of composite laminated structures[J]. Journal of Vibration and Shock, 2018, 37(22): 194-200, 213. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201822029.htm
    [48]
    MAMALIS A G, ROBINSON M, MANOLAKOS D E, et al. Crashworthy capability of composite material structures[J]. Composite Structures, 1997, 37(2): 109-134. doi: 10.1016/S0263-8223(97)80005-0
    [49]
    FARLEY G L, JONES R M. Energy-absorption capability of composite tubes and beams[R]. Washington DC: NASA, 1989.
    [50]
    HULL D. A unified approach to progressive crushing of fibre-reinforced composite tubes[J]. Composites Science and Technology, 1991, 40(4): 377-421. doi: 10.1016/0266-3538(91)90031-J
    [51]
    GUPTA N K, VELMURUGAN R, GUPTA S K. An analysis of axial crushing of composite tubes[J]. Journal of Composite Materials, 1997, 31(13): 1262-1286. doi: 10.1177/002199839703101301
    [52]
    MOU Hao-lei, XIE Jiang, ZOU Jun, et al. Experimental researches on failure and energy absorption of composite laminated thin-walled structures[J]. Journal of Composite Materials, 2020, 1-16.
    [53]
    FENG Zhen-yu, XIE Jiang, SONG Shan-shan, et al. The failure mechanism and energy-absorbing characteristics of composite thin-walled C-channels subject to low-speed axial compression[J]. Journal of Composite Materials, 2019, 53(16): 2249-2259. doi: 10.1177/0021998319826337
    [54]
    FERABOLI P, SPETZLER M. Design of energy-absorbing CFRP stanchions for the cargo floor structure of transport category airplanes[C]//JAMS. JAMS 2013 Technical Review Meeting. Washington DC: JAMS, 2013: 1-21.
    [55]
    OSTLER D, BLESSING E, PERL M, et al. A building block approach for crashworthiness testing of composites[C]//JAMS. JAMS 2019 Technical Review Meeting. Washington DC: JAMS, 2019: 1-30.
    [56]
    JACKSON A, DUTTON S, GUNNION A J, et al. Investigation into laminate design of open carbon-fibre/epoxy sections by quasi-static and dynamic crushing[J]. Composite Structures, 2011, 93(10): 2646-2654. doi: 10.1016/j.compstruct.2011.04.032
    [57]
    DAVID M, JOHNSON A F, VOGGENREITER H. Analysis of crushing response of composite crashworthy structures[J]. Applied Composite Materials, 2013, 20: 773-787. doi: 10.1007/s10443-012-9301-8
    [58]
    FERABOLI P. Development of a corrugated test specimen for composite materials energy absorption[J]. Journal of Composite Materials, 2008, 42: 229-256. doi: 10.1177/0021998307086202
    [59]
    SOKOLINSKY V S, INDERMUEHLE K C, HURTADO J A. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42: 1119-1126. doi: 10.1016/j.compositesa.2011.04.017
    [60]
    LAU S T W, SAID M R, YAAKOB M Y. On the effect of geometrical designs and failure modes in composite axial crushing: a literature review[J]. Composite Structure, 2012, 94: 803-812. doi: 10.1016/j.compstruct.2011.09.013
    [61]
    CHIU L N S, FALZON B G, BOMAN R, et al. Finite element modelling of composite structures under crushing load[J]. Composite Structure, 2015, 131: 215-228. doi: 10.1016/j.compstruct.2015.05.008
    [62]
    REN Yi-ru, JIANG Hong-yong, LIU Zhi-hui. Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes[J]. International Journal of Mechanical Sciences, 2019, 157/158: 1-12. doi: 10.1016/j.ijmecsci.2019.04.024
    [63]
    LUO Hai-bo, YAN Ying, ZHANG Tai-hua, et al. Progressive failure numerical simulation and experimental verification of carbon-fiber composite corrugated beams under dynamic[J]. Polymer Testing, 2017, 63: 12-24. doi: 10.1016/j.polymertesting.2017.08.004
    [64]
    SIROMANI D, HENDERSON G, MIKITA D, et al. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 25-35. doi: 10.1016/j.compositesa.2014.04.019
    [65]
    ESHKOOR R A, OSHKOVR S A, SULONG A B, et al. Effect of trigger configuration on the crashworthiness characteristics of natural silk epoxy composite tubes[J]. Composites Part B: Engineering, 2013, 55: 5-10. doi: 10.1016/j.compositesb.2013.05.022
    [66]
    HEIMBS S, STROBL F, MIDDENDORF P. Integration of a composite crash absorber in aircraft fuselage vertical struts[J]. International Journal of Vehicle Structures and Systems, 2011, 3(2): 87-95.
    [67]
    COLLINS J S, JOHNSON E R. Static and dynamic response of graphite-epoxy curved frames[J]. Journal of Composite Materials, 1992, 26(6): 792-803. doi: 10.1177/002199839202600602
    [68]
    WAIMER M. Development of a kinematics model for the assessment of global crash scenarios of a composite transport aircraft fuselage[R]. Cologne: DLR, 2013.
    [69]
    BUSSADORI B P, SCHUFFENHAUER K, SCATTINA A. Modelling of CFRP crushing structures in explicit crash analysis[J]. Composites Part B: Engineering, 2014, 60: 725-735. doi: 10.1016/j.compositesb.2014.01.020
    [70]
    MOU Hao-lei, XIE Jiang, SU Xuan, et al. Crashworthiness experiment and simulation analysis of composite thin-walled circular tubes under axial crushing[J]. Mechanics of Composite Materials, 2019, 55(1): 121-134. doi: 10.1007/s11029-019-09797-x
    [71]
    FENG Zhen-yu, ZHOU Jian, ZHANG Xue-han, et al. Mechanism analysis and laminated shell modeling for crushing energy absorption of composite thin-walled circular tubes[J]. Journal of Vibration and Shock, 2017, 36(23): 268-275. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201723039.htm
    [72]
    SIROMANI D, AWERBUCH J, TAN T M. Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression[J]. Composites Part B: Engineering, 2014, 64: 50-58. doi: 10.1016/j.compositesb.2014.04.008
    [73]
    XIE Jiang, MA Cong-yao, ZHOU Jian, et al. Quasi-static crushing simulation research and failure mode analysis of composite thin-walled C-channel specimen[J]. Journal of Aeronautical Materials, 2017, 37(2): 73-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201702011.htm
    [74]
    MOU Hao-lei, SU Xuan, XIE Jiang, et al. Parametric analysis of composite sinusoidal specimens under quasi-static crushing[J]. The Aeronautical Journal, 2018, 122(1254): 1244-1262. doi: 10.1017/aer.2018.64
    [75]
    HADAVINIA H, GHASEMNEJAD H. Effects of mode-Ⅰ and mode-Ⅱ interlaminar fracture toughness on the energy absorption of CFRP twill/weave composite box sections[J]. Composite Structures, 2009, 89: 303-314. doi: 10.1016/j.compstruct.2008.08.004
    [76]
    PALANIVELU S, VAN PAEPEGEM W, DEGRIECK J, et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: central delamination and triggering modelling[J]. Polymer Testing, 2010, 29: 729-741. doi: 10.1016/j.polymertesting.2010.05.010
    [77]
    WAIMER M, SIEMANN M H, FESER T. Simulation of CFRP components subjected to dynamic crash loads[J]. International Journal of Impact Engineering, 2017, 101: 115-131. doi: 10.1016/j.ijimpeng.2016.11.011
    [78]
    XIE Jiang, SONG Shan-shan, SONG Dong-fang, et al. Stacked shell modeling method for failure analysis of composite C-channels subject to axial compression[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 127-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201902013.htm
    [79]
    FERABOLI P, WADE B, DELEO F, et al. LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42: 1809-1825. doi: 10.1016/j.compositesa.2011.08.004
    [80]
    MOU Hao-lei, ZOU Tian-chun, CHEN Yan-fen, et al. Experiment and simulation of composite corrugated plate under quasi-static crushing and analysis of material model parameters[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(4): 618-622. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201504027.htm
    [81]
    WADE B, FERABOLI P. Composite damage material modeling for crash simulation: MAT54 & amp; amp; the efforts of the CMH-17 numerical round robin[C]//JAMS. JAMS 2014 Technical Review Meeting. Washington DC: JAMS, 2014: 1-26.
    [82]
    BUSSADORI B P, SCHUDDENHAUER K, SCATTINA A. Modelling of CFRP crushing structures in explicit crash analysis[J]. Composites Part B: Engineering, 2014, 60: 725-735. doi: 10.1016/j.compositesb.2014.01.020
    [83]
    RICCIO A, RAIMONDO A, DI CAPRIO F, et al. Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system[J]. Composites Part B: Engineering, 2018, 150: 93-103. doi: 10.1016/j.compositesb.2018.05.044
    [84]
    JIANG Hong-yong, REN Yi-ru, LIU Zhi-hui, et al. Multi-scale analysis for mechanical properties of fiber bundle and damage characteristics of 2D triaxially braided composite panel under shear loading[J]. Thin-Walled Structures, 2018, 132: 276-286. doi: 10.1016/j.tws.2018.08.022
    [85]
    REN Yi-ru, ZHANG Song-jun, JIANG Hong-yong, et al. Meso-scale progressive damage behavior characterization of triaxial braided composites under quasi-static tensile load[J]. Applied Composite Materials, 2018, 25: 335-352. doi: 10.1007/s10443-017-9623-7
    [86]
    ZHANG Chao, MAO Chun-jian, CURIEL-SOSA J L, et al. Meso-scale finite element simulations of 3D braided textile composites: effects of force loading modes[J]. Applied Composite Materials, 2018, 25: 823-841. doi: 10.1007/s10443-018-9728-7
    [87]
    JACKSON K E, FASANELLA E L, KELLAS S. Development of a scale model composite fuselage concept for improved crashworthiness[J]. Journal of Aircraft, 2001, 38(1): 95-103. doi: 10.2514/2.2739
    [88]
    RICCIO A, SAPUTO S, SELLITTO A, et al. On the crashworthiness behaviour of a composite fuselage sub-floor component[J]. Composite Structures, 2020, 234: 1-14.
    [89]
    WIGGENRAAD J F M, SMICHIELSEN A L P J, SANTORO D, et al. Development of a crashworthy composite fuselage concept for a commuter aircraft[R]. Amsterdam: NLR, 2001.
    [90]
    MOU Hao-lei, ZOU Tian-chun, FENG Zhen-yu, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens[J]. Latin American Journal of Solids and Structures, 2016, 13(6): 1186-1202. doi: 10.1590/1679-78252446
    [91]
    DELSART D, PORTEMONT G, WAIMER M. Crash testing of a CFRP commercial aircraft sub-cargo fuselage section[J]. Procedia Structural Integrity, 2016, 2: 2198-2205. doi: 10.1016/j.prostr.2016.06.275
    [92]
    CAPRIO F D, IGNARRA M, MARULO F, et al. Design of composite stanchions for the cargo subfloor structure of a civil aircraft[J]. Procedia Engineering, 2016, 167: 88-96. doi: 10.1016/j.proeng.2016.11.673
    [93]
    FENG Zhen-yu, XIE Jiang, LI Heng-hui, et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 115-126. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201902012.htm
    [94]
    FENG Zhen-yu, CHENG Kun, ZHAO Yi-fan, et al. Study on impact energy absorption characteristics of the lower structure of typical cargo floor of transportation aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 208-220. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201909015.htm
    [95]
    FASANELLA E L, WIDMAYER E, ROBINSON M P. Structural analysis of the controlled impact demonstration of a jet transport airplane[J]. Journal of Aircraft, 1987, 24(4): 274-280.
    [96]
    FASANELLA E L, ALFARO-BOU E, HAYDUK R J. Impact data from a transport aircraft during a controlled impact demonstration[R]. Washington DC: NASA, 1986.
    [97]
    WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage section located forward of the wing[R]. Washington DC: NASA, 1983.
    [98]
    FASANELLA E L, ALFARO-BOU E. Vertical drop test of a transport fuselage section located aft of the wing[R]. Washington DC: NASA, 1986.
    [99]
    WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage center section including the wheel wells[R]. Washington DC: NASA, 1983.
    [100]
    JACKSON K E, LITTELL J D, ANNETT M S, et al. Finite element simulations of two vertical drop tests of F-28 fuselage sections[R]. Washington DC: NASA, 2018.
    [101]
    LITTELL J D. A summary of results from two full-scale F28 fuselage section drop tests[R]. Washington DC: NASA, 2018.
    [102]
    LOGUE T V, MCGUIRE R J, REINHARDT J W, et al. Vertical drop test of a narrow-body fuselage section with overhead stowage bins and auxiliary fuel tank system on board[R]. Washington DC: FAA, 1995.
    [103]
    ABRAMOWITZ A, SMITH T G, VU T. Vertical drop test of a narrow-body transport fuselage section with a conformable auxiliary fuel tank onboard[R]. Washington DC: FAA, 2000.
    [104]
    ABRAMOWITZ A, SMITH T G, VU T, et al. Vertical drop test of an ATR42-300 airplane[R]. Washington DC: FAA, 2006.
    [105]
    OLIVARES G. Crashworthiness certification by analysis[C]//JAMS. JAMS 2018 Technical Review Meeting. Washington DC: JAMS, 2018: 1-60.
    [106]
    HASHEMI S M R, WALTON A C. A systematic approach to aircraft crashworthiness and impact surface material models[J]. Journal of Aerospace Engineering, 2000, 214(5): 265-280.
    [107]
    RICCIO A, SAPUTO S, SELLITTO A, et al. An insight on the crashworthiness behavior of a full-scale composite fuselage section at different impact angles[J]. Aerospace, 2019, 72(6): 1-14.
    [108]
    KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[R]. New York: SAE International, 2003.
    [109]
    LIU Xiao-chuan, GUO Jun, SUN Xia-sheng, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130-2140. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201309015.htm
    [110]
    LIU Xiao-chuan, ZHOU Su-feng, MA Jun-feng, et al. Correlation study of crash analysis and test of civil airplane sub-cabin energy absorption structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2202-2210. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201212007.htm
    [111]
    WAIMER M, KOHLGRÜBER D, HACHENBERG D, et al. The kinematics model-a numerical method for the development of a crashworthy composite fuselage design of transport aircraft[C]//FAA. 6th Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2010: 1-32.
    [112]
    KINDERVATER C M, KOHLGRUBER D, JOHNSON A. Composite vehicle structural crashworthiness—a status of design methodology and numerical simulation techniques[J]. International Journal of Crashworthiness, 1999, 4(2): 213-230.
    [113]
    ZOU Tian-chun, MOU Hao-lei, FENG Zhen-yu. Research on effects of oblique struts on crashworthiness of composite fuselage sections[J]. Journal of Aircraft, 2012, 49(6): 2059-2063.
    [114]
    ZHU Xian-fei, FENG Yun-wen, XUE Xiao-feng, et al. Evaluate the crashworthiness response of an aircraft fuselage section with luggage contained in the cargo hold[J]. International Journal of Crashworthiness, 2017, 22(4): 347-364.
    [115]
    ADAMS A, LANKARANI H M. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness[J]. International Journal of Crashworthiness, 2003, 8(4): 401-413.
    [116]
    MENG Fan-xing, ZHOU Qin, YANG Jia-ling. Improvement of crashworthiness behaviour for simplified structural models of aircraft fuselage[J]. International Journal of Crashworthiness, 2009, 14(1): 83-97.
    [117]
    FASANELLA E L, JACKSON K E. Crash simulation of a vertical drop test of a B737 fuselage section with auxiliary fuel tank[C]//FAA. 3rd Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2001: 1-19.
    [118]
    SCHATROW P, WAIMER M. Crash concept for composite transport aircraft using mainly tensile and compressive absorption mechanisms[J]. CEAS Aeronautical Journal, 2016, 7(3): 471-482.
    [119]
    SCHATROW P, WAIMER M. Investigation of a crash concept for CFRP transport aircraft based on tension absorption[J]. International Journal of Crashworthiness, 2014, 19(5): 524-539.
    [120]
    DELETOMBE E, DELSART D, KOHLGRÜBER D, et al. Improvement of numerical methods for crash analysis in future composite aircraft design[J]. Aerospace Science and Technology, 2000, 4(3): 189-199.
    [121]
    XIE Jiang, FENG Zhen-yu, ZHAO Yan-qiang, et al. Evaluation method based on probability for energy-absorbing composite structures with uncertain parameters[J]. Journal of Vibration and Shock, 2015, 34(22): 109-114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201522019.htm
    [122]
    XIE Jiang, MOU Hao-lei, SU Xuan, et al. Uncertain evaluation of crashworthiness of thin-walled composite structures[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(8): 1238-1248.
    [123]
    ZHENG Jian-qiang, XIANG Jin-wu, LUO Zhang-ping, et al. Crashworthiness optimization of civil aircraft subfloor structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 640-649. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201204009.htm
    [124]
    REN Yi-ru, XIANG Jin-wu. Crashworthiness uncertainty analysis of typical civil aircraft based on Box-Behnken method[J]. Chinese Journal of Aeronautics, 2014, 27(3): 550-557.
    [125]
    LYLE K H, STOCKWELL A E, HARDY R C. Application of probability methods to assess airframe crash modeling uncertainty[J]. Journal of Aircraft, 2007, 44(5): 1568-1573.

Catalog

    Article Metrics

    Article views (1952) PDF downloads(681) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return