Citation: | CAO Yuan, WEN Jia-kun, MA Lian-chuan. Dynamic marshalling and scheduling of trains in major epidemics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 120-128. doi: 10.19818/j.cnki.1671-1637.2020.03.011 |
[1] |
CAO Yuan, WANG Zheng-chao, LIU Feng, et al. Bio-inspired speed curve optimization and sliding mode tracking control for subway trains[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6331-6342. doi: 10.1109/TVT.2019.2914936
|
[2] |
CAO Yuan, SUN Yong-kui, XIE Guo, et al. Fault diagnosis of train plug door based on a hybrid criterion for IMFs selection and fractional wavelet package energy entropy[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7544-7551. doi: 10.1109/TVT.2019.2925903
|
[3] |
SU Shuai, WANG Xue-kai, CAO Yuan, et al. An energy-efficient train operation approach by integrating the metro timetabling and eco-driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20: 1-17. doi: 10.1109/TITS.2018.2885837
|
[4] |
ZHANG Yu-zhuo, CAO Yuan, WEN Ying-hong, et al. Optimization of information interaction protocols in cooperative vehicle-infrastructure systems[J]. Chinese Journal of Electronics, 2018, 27(2): 439-444. doi: 10.1049/cje.2017.10.009
|
[5] |
CAO Yuan, MA Lian-chuan, XIAO Shuo, et al. Standard analysis for transfer delay in CTCS-3[J]. Chinese Journal of Electronics, 2017, 26(5): 1057-1063. doi: 10.1049/cje.2017.08.024
|
[6] |
CAO Yuan, LI Peng, ZHANG Yu-zhuo. Parallel processing algorithm for railway signal fault diagnosis data based on cloud computing[J]. Future Generation Computer Systems, 2018(88): 279-283.
|
[7] |
HALTUF M. Shift2Rail JU from member state's point of view[J]. Transportation Research Procedia, 2016, 14: 1819-1828. doi: 10.1016/j.trpro.2016.05.148
|
[8] |
WANG Yu-jian, SONG Yong-duan, GAO Hui, et al. Distributed fault-tolerant control of virtually and physically interconnected systems with application to high-speed trains under traction/braking failures[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 535-545. doi: 10.1109/TITS.2015.2479922
|
[9] |
FELEZ J, KIM Y J, BORRELLI F. A model predictive control approach for virtual coupling in railways[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7): 2728-2739. doi: 10.1109/TITS.2019.2914910
|
[10] |
SCHUMANN T. Increase of capacity on the Shinkansen high-speed line using virtual coupling[J]. International Journal of Transport Development and Integration, 2017, 1(4): 666-676. doi: 10.2495/TDI-V1-N4-666-676
|
[11] |
荀径, 陈明亮, 宁滨, 等. 虚拟重联条件下地铁列车追踪运行性能衡量[J]. 北京交通大学学报, 2019, 43(1): 96-103. doi: 10.11860/j.issn.1673-0291.2019.01.011
XUN Jing, CHEN Ming-liang, NING Bin, et al. Train tracking performance measurement under virtual coupling in subway[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 96-103. (in Chinese). doi: 10.11860/j.issn.1673-0291.2019.01.011
|
[12] |
刘鹏. 客流自适应地铁运营调度策略研究[D]. 成都: 西南交通大学, 2015.
LIU Peng. Research on the traffic self-adaptive of subway operation dispatch strategy[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese).
|
[13] |
VAZIFEH M M, SANTI P, RESTA G, et al. Addressing the minimum fleet problem in on-demand urban mobility[J]. Nature, 2018, 557(7706): 534-538. doi: 10.1038/s41586-018-0095-1
|
[14] |
SONE S. Comparison of the technologies of the Japanese Shinkansen and Chinese High-speed Railways[J]. Journal of Zhejiang University: Science A, 2015, 16(10): 769-780. doi: 10.1631/jzus.A1500220
|
[15] |
GHOSEIRI K, SZIDAROVSZKY F, ASGHARPOUR M J. A multi-objective train scheduling model and solution[J]. Transportation Research Part B: Methodological, 2004, 38(10): 927-952. doi: 10.1016/j.trb.2004.02.004
|
[16] |
ARIANO A, PACCIARELLI D, PRANZO M. A branch and bound algorithm for scheduling trains in a railway network[J]. European Journal of Operational Research, 2007, 183(2): 643-657. doi: 10.1016/j.ejor.2006.10.034
|
[17] |
ESPINOSA-ARANDA J L, GARCÍA-RÓDENAS R. A demand-based weighted train delay approach for rescheduling railway networks in real time[J]. Journal of Rail Transport Planning and Management, 2013, 3(1/2): 1-13.
|
[18] |
QUAGLIETTA E, CCRMAN F, GOVERDE R M P. Stability analysis of railway dispatching plans in a stochastic and dynamic environment[J]. Journal of Rail Transport Planning and Management, 2013, 3(4): 137-149. doi: 10.1016/j.jrtpm.2013.10.009
|
[19] |
SALIM V, CAI Xiao-qiang. A genetic algorithm for railway scheduling with environmental considerations[J]. Environmental Modelling and Software, 1997, 12(4): 301-309. doi: 10.1016/S1364-8152(97)00026-1
|
[20] |
CAPRARA A, MONACI M, TOTH P, et al. A Lagrangian heuristic algorithm for a real-world train timetabling problem[J]. Discrete Applied Mathematics, 2006, 154(5): 738-753. doi: 10.1016/j.dam.2005.05.026
|
[21] |
ZOU You, XIE Jia-rong, WANG Bing-hong. Evacuation of pedestrians with two motion modes for panic system[J]. PloS One, 2016, 11(4): 1-13.
|
[22] |
GOU Ren-yong. New insights into discretization effects in cellular automata models for pedestrian evacuation[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 400: 1-11. doi: 10.1016/j.physa.2014.01.001
|
[23] |
QIU Guo, SONG Rui, HE Shi-wei, et al. The pedestrian flow characteristics of Y-shaped channel[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 508: 199-212. doi: 10.1016/j.physa.2018.05.015
|
[24] |
SONG Xiao, XIE Hong-nan, SUN Jiang-han, et al. Simulation of pedestrian rotation dynamics near crowded exits[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 3142-3155. doi: 10.1109/TITS.2018.2873118
|
[25] |
MITCHELL I. ERTMS level 4, train convoys or virtual coupling[J]. IRSE News, 2016, 219: 14-15.
|
[26] |
CAO Yuan, ZHANG Yu-zhuo, WEN Tao, et al. Research on dynamic nonlinear input prediction of fault diagnosis based on fractional differential operator equation in high-speed train control system[J]. Chaos, 2019, 29(1): 013130-1-7. doi: 10.1063/1.5085397
|
[27] |
QIAN Hua, LI Yu-guo, NIESEN P V, et al. Spatial distribution of infection risk of SARS transmission in a hospital ward[J]. Building and Environment, 2009, 44(8): 1651-1658. doi: 10.1016/j.buildenv.2008.11.002
|
[28] |
BENTHAM R, WHILEY H. Quantitative microbial risk assessment and opportunist waterborne infections-are there too many gaps to fill?[J]. International Journal of Environmental Research and Public Health, 2018, 15(6): 1-11.
|
[29] |
钱华, 郑晓红, 张学军. 呼吸道传染病空气传播的感染概率的预测模型[J]. 东南大学学报(自然科学版), 2012, 42(3): 468-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201203016.htm
QIAN Hua, ZHENG Xiao-hong, ZHANG Xue-jun. Prediction of risk of airborne transmitted diseases[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(3): 468-472. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201203016.htm
|
[30] |
孟琦. 基于社会力的车站交叉行人流特性分析及疏散研究[D]. 北京: 北京交通大学, 2019.
MENG Qi. Intersecting pedestrian flows characteristics analysis and evacuation in stations based on social force[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese).
|