Citation: | LI Cheng-long, QU Wen-qiu, LI Yan-dong, HUANG Long-yang, WEI Peng. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54. doi: 10.19818/j.cnki.1671-1637.2020.04.003 |
[1] |
MENOUAR H, GUVENC I, AKKAYA K, et al. UAV-enabled intelligent transportation systems for the smart city: applications and challenges[J]. IEEE Communications Magazine, 2017, 55(3): 22-28. doi: 10.1109/MCOM.2017.1600238CM
|
[2] |
HOLDEN J, GOEL N. Fast-forwarding to a future of on-demand urban air transportation[R]. San Francisco: Uber Elevate, 2016.
|
[3] |
THIPPHAVONG P, APAZA R, BARMORE B, et al. Urban air mobility airspace integration concepts and considerations[C]//AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 3676-3681.
|
[4] |
BALAKRISHNAN K, POLASTRE J, MOOBERRY J, et al. Blueprint for the sky. The roadmap for the safe integration of autonomous aircraft[R]. Santa Clara Valley: Airbus A3, 2018.
|
[5] |
EmbraerX. Flight plan 2030: an air traffic management concept for urban air mobility[R]. Duskamp: EmbraerX, 2019.
|
[6] |
LASCARA B, SPENCER T, DEGARMO M, et al. Urban air mobility landscape report[R]. McLean: MITRE, 2018.
|
[7] |
XU H X. The future of transportation: white paper on urban air mobility systems[R]. Guangzhou: EHang, 2020.
|
[8] |
BAUR S, SCHICKRAM S, HOMULENKO A, et al. Urban air mobility: the rise of a new mode of transportation[R]. Hamburg: Roland Berger, 2018.
|
[9] |
ZHAO Jing, XIE Feng-jie. Cognitive and artificial intelligence system for logistics industry[J]. International Journal of Innovative Computing and Applications, 2020, 11(2/3): 84-88. doi: 10.1504/IJICA.2020.107118
|
[10] |
吴永鑫. 物流无人机在中国农村电商物流市场应用研究[D]. 深圳: 深圳大学, 2017.
WU Yong-xin. The research of the application of the logistics unmanned aerial vehicle in the China's rural electricity supplier logistics[D]. Shenzhen: Shenzhen University, 2017. (in Chinese).
|
[11] |
张丹, 吴陈炜, 谢安桓. 城市交通问题的空中解决方案——自主载人飞行器研究综述[J]. 无人系统技术, 2018, 1(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-UMST201802004.htm
ZHANG Dan, WU Chen-wei, XIE An-huan. Aerial solution for urban traffic problems: overview of autonomous manned aircraft[J]. Unmanned Systems Technology, 2018, 1(2): 1-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-UMST201802004.htm
|
[12] |
REICHE C, MCGILLEN C, SIEGEL J, et al. Are we ready to weather urban air mobility(UAM)?[C]//IEEE. 2019Integrated Communications, Navigation and Surveillance Conference(ICNS). New York: IEEE, 2019: 1-7.
|
[13] |
SALLEH M, TAN D Y, KOH C H, et al. Preliminary concept of operations(ConOps)for traffic management of unmanned aircraft systems(TM-UAS)in urban environment[C]//AIAA. Information Systems—AIAA Infotech@Aerospace Infotech. Reston: AIAA, 2017: 1-13.
|
[14] |
Joint DOT/NASA. Concepts studies for future intracity air transportation systems[R]. Cambridge: Massachusetts Institute of Technology, 1970.
|
[15] |
DAJANI J S, WARNER D, EPSTEIN D, et al. The role of the helicopter in transportation[R]. Durham: Duke University, 1976.
|
[16] |
MOORE M D. Personal air vehicles: a rural/regional and intraurban on-demand transportation system[J]. Journal of the American Institute of Aeronautics and Astronautics, 2003, 2646: 1-20.
|
[17] |
CHAMBERS J R. Innovation in flight: research of the NASA Langley Research Center on revolutionary advanced concepts for aeronautics[R]. Hampton: National Aeronautics and Space Administration(NASA), 2005.
|
[18] |
KOPARDEKAR P. Unmanned aerial system(UAS)traffic management(UTM): enabling low-altitude airspace and UAS operations[R]. Hampton: National Aeronautics and Space Administration(NASA), 2014.
|
[19] |
JOHNSON W C. UAM coordination and assessment team(UCAT)[R]. Ames: National Aeronautics and Space Administration(NASA), 2019.
|
[20] |
VASCIK P D, HANSMAN J. Scaling constraints for urban air mobility operations: air traffic control, ground infrastructure, and noise[C]//AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 3849-3875.
|
[21] |
SHIHAB S A M, WEI Peng, SHI Jie, et al. Optimal eVTOL fleet dispatch for urban air mobility and power grid services[C]//AIAA. Aviation 2020Forum. Reston: AIAA, 2020: 1-17.
|
[22] |
GEORGE H, WEI Peng. Service-oriented separation assurance for small UAS traffic management[C]//IEEE. 2019Integrated Communications, Navigation and Surveillance Conference(ICNS). New York: IEEE, 2019: 1-11.
|
[23] |
National Academiesof Sciences. Advancing aerial mobility: a national blueprint[R]. Washington DC: The National Academies Press, 2020.
|
[24] |
POLACZYK N, TROMBINO E, WEI P, et al. A review of current technology and research in urban on-demand air mobility applications[C]//RAM J, KENDRA B. 8th Biennial Autonomous VTOL Technical Meeting and 6th Annual Electric VTOL Symposium. Washington DC: FAA, 2019: 1-11.
|
[25] |
全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议综述[J]. 航空学报, 2020, 41(1): 6-34.
QUAN Quan, LI Gang, BAI Yi-qin, et al. Low altitude UAV traffic management: an introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 6-34. (in Chinese).
|
[26] |
SHIHAB S A M, WEI P, RAMIREZ D S J, et al. By schedule or on demand?a hybrid operation concept for urban air mobility[C]//AIAA. Aviation 2019Forum. Reston: AIAA, 2019: 1-13.
|
[27] |
联合国人居署. 2016世界城市状况报告, 城市化与发展: 新兴未来[R]. 内罗毕: 联合国人居署, 2019. UN-Habitat. Urbanization and development: emerging futures[R]. Nairobi: UN-Habitat, 2019. (in Chinese).
|
[28] |
北京交通发展研究院. 北京市居民公共交通出行特征分析[R]. 北京: 北京交通发展研究院, 2019. Beijing Transport Institute. Analysis on the characteristics ofpublic transportation in Beijing[R]. Beijing: Beijing Transport Institute, 2019. (in Chinese).
|
[29] |
VASCIK P D, HANSMAN J. Evaluation of key operational constraints affecting on-demand mobility for aviation in the Los Angeles basin: ground infrastructure, air traffic control and noise[C]//AIAA. 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: 1-20.
|
[30] |
VASCIK P D, HANSMAN R J. Constraint identification in on-demand mobility for aviation through an exploratory case study of los angeles[C]//AIAA. 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: 1-26.
|
[31] |
弓永峰, 陈俊斌, 刘海博, 等. 产业化加速, 氢能时代临近——燃料电池行业专题报告[R]. 北京: 中信证券, 2019. GONG Yong-feng, CHEN Jun-bin, LIU Hai-bo, et al. The era of hydrogen energy is approaching—a special report on fuel cell industry[R]. Beijing: Citic Securities, 2019. (in Chinese).
|
[32] |
王莉, 戴泽华, 杨善水, 等. 电气化飞机电力系统智能化设计研究综述[J]航空学报, 2019, 40(2): 5-19.
WANG Li, DAI Ze-hua, YANG Shan-shui, et al. Review of intelligent design of electrified aircraft power system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 5-19. (in Chinese).
|
[33] |
中国民用航空局航空器适航审定司. 基于运行风险的无人机适航审定指导意见[R]. 北京: 中国民用航空局航空器适航审定司, 2019.
Aircraft Airworthiness Certification Department of CAAC. Guidance on UAV airworthiness certification based on operational risk[R]. Beijing: Aircraft Airworthiness Certification Department of CAAC, 2019. (in Chinese).
|
[34] |
MUELLER E. Enabling airspace integration for high density urban air mobility[R]. Ames: National Aeronautics and Space Administration(NASA), 2017.
|
[35] |
VASCIK P D, BALAKRISHNAN H, HANSMAN J. Assessment of air traffic control for urban air mobility and unmanned systems[C]//FAA & amp; amp; EUROCONTROL. The 8th International Conference for Research in Air Transportation(ICRAT). Barcelona: EUROCONTROL, 2018: 1-9.
|
[36] |
CHO J, YOON Y. How to assess the capacity of urban airspace: a topological approach using keep-in and keep-out geofence[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 137-149. doi: 10.1016/j.trc.2018.05.001
|
[37] |
VASCIK P D, CHO J, BULUSU V, et al. Geometric approach towards airspace assessment for emerging operations[C]//AIAA. Thirteenth USA/Europe Air Traffic Management Research and Development Seminar(ATM2019). Reston: AIAA, 2019: 1-12.
|
[38] |
ZHU Guo-dong, WEI Peng. Pre-departure planning for urban air mobility flights with dynamic airspace reservation[C]//AIAA. Aviation 2019Forum. Reston: AIAA, 2019: 1-11.
|
[39] |
ZHU Guo-dong, WEI Peng. Low-altitude UAS traffic coordination with dynamic geofencing[C]//AIAA. 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016: 1-16.
|
[40] |
SUNIL E, ELLERBROEK J, HOEKSTRA J. Metropolisurban airspace design[R]. Delft: Technical University of Delft National, 2014.
|
[41] |
VIDOSAVLJEVIC A, DELAHAYE D, SUNIL E, et al. Complexity analysis of the concepts of urban airspace design for metropolis project[C]//EIWAC. 4th ENRI International Workshop on ATM/CNS. Berlin: Springer, 2015: 1-11.
|
[42] |
SUNIL E, HOEKSTRA J, ELLERBROEK J, et al. Metropolis: rel1ensities[C]//EUROCONTROL. 11th USA/EUROPE Air Traffic Management R & amp; amp; D Seminar. Barcelona: EUROCONTROL, 2015: 1-11.
|
[43] |
SUNIL E, HOEKSTRA J, ELLERBROEK J, et al. The influence of traffic structure on airspace capacity[C]//FAA & amp; amp; EUROCONTROL. The 7th International Conference for Research in Air Transportation(ICRAT). Washington DC: FAA, 2016: 1-9.
|
[44] |
SUNIL E, ELLERBROEK J, HOEKSTRA J, et al. An analysis of decentralized airspace structure and capacity using fast-time simulations[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(1): 38-51. doi: 10.2514/1.G000528
|
[45] |
BOSSON C, LAUDERDALE T A. Simulation evaluations of an autonomous urban air mobility network management and separation service[C]//AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-14.
|
[46] |
SALLEH M F B, CHI Wan-chao, WANG Zhen-kun, et al. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations[C]//AIAA. 2018 AIAA Information Systems Infotech@Aerospace. Reston: AIAA, 2018: 1-12.
|
[47] |
ARNTZEN M, AALMOES R, BUSSINK F, et al. Noise computation for future urban air traffic systems[R]. Amsterdam: National Aerospace Laboratory(NLR), 2015.
|
[48] |
HOEKSTRA J, MAAS J, SUNIL E. How do layered airspace design parameters affect airspace capacity and safety?[C]//FAA & amp; amp; EUROCONTROL. The 7th International Conference for Research in Air Transportation(ICRAT). Reston: AIAA, 2016: 1-8.
|
[49] |
Booz Allen Hamilton. Urbanair mobility(UAM)market study[R]. Ames: National Aeronautics and Space Administration(NASA), 2018.
|
[50] |
GOODRICH K H, BARMORE B. Exploratory analysis of the airspace throughput and sensitivities of an urban air mobility system[C]//AIAA. 2018 Aviation Technology, Integration, and Opera-tions Conference. Reston: AIAA, 2018: 1-9.
|
[51] |
KOCHENDERFER M J, HOLLAND J E, CHRYSSANTHACOPOULOS J P. Next-generation airborne collision avoidance system[R]. Lexington: Massachusetts Institute of Technology-Lincoln Laboratory, 2012.
|
[52] |
YU Xiang, ZHANG You-min. Sense and avoid technologies with applications to unmanned aircraft systems: review and prospects[J]. Progress in Aerospace Sciences, 2015, 74: 152-166. doi: 10.1016/j.paerosci.2015.01.001
|
[53] |
YANG Xu-xi, WEI Peng. Autonomous on-demand free flight operations in urban air mobility using Monte Carlo tree search[C]//FAA & amp; amp; EUROCONTROL. The 8th International Conference for Research in Air Transportation(ICRAT). Washington DC: FAA, 2018: 1-8.
|
[54] |
YANG Xu-xi, DENG Li-seng, WEI Peng. Multi-agent autonomous on-demand free flight operations in urban air mobility[C]//AIAA. Aviation 2019Forum. Reston: AIAA, 2019: 1-13.
|
[55] |
FU Meng-ying, ROTHFELD R, ANTONIOU C. Exploring preferences for transportation modes in an urban air mobility environment: Munich case study[J]. Transportation Research Record, 2019(2673): 427-442.
|
[56] |
ROTHFELD R, BALAC M, PLOETNER K, et al. Agentbased simulation of urban air mobility[C]//AIAA. Modeling and Simulation Technologies Conference. Reston: AIAA, 2018: 1-10.
|
[57] |
FADHIL D N. A GIS-based analysis for selecting ground infrastructure locations for urban air mobility[D]. Munich: Technical University of Munich, 2018.
|
[58] |
VASCIK P, HANSMAN J. Correction: development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors[C]//AIAA. SciTech 2019Forum. Reston: AIAA, 2019: 1-26.
|
[59] |
杨秀玉. 基于5G移动通信的无人机与民用飞机防相撞技术研究[D]. 广汉: 中国民用航空飞行学院, 2019.
YANG Xiu-yu. Research on anti-collision technology based on 5Gbetween UAV and civil aircraft[D]. Guanghan: Civil Aviation Flight University of China, 2019. (in Chinese).
|
[60] |
HOSSEINI N, JAMAL H, HAQUE J, et al. UAV command and control, navigation and surveillance: a review of potential5G and satellite systems[C]//IEEE. 2019 Aerospace Conference. New York: IEEE, 2019: 1-10.
|
[61] |
GUPTA L, JAIN R, VASZKUN G. Survey of important issues in UAV communication networks[J] IEEE Communications Surveys and Tutorials, 2015, 18(2): 1123-1152.
|
[62] |
PRADEEP P. Arrival management for eVTOL aircraft in ondemand urban air mobility[D]. Ames: Iowa State University, 2019.
|
[63] |
KLEINBEKMAN I, MITICI M A, WEI P. eVTOL arrival sequencing and scheduling for on-demand urban air mobility[C]//IEEE. IEEE/AIAA Digital Avionics Systems Conference. New York: IEEE, 2018: 1-7.
|
[64] |
SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]Nature, 2016, 529(7587): 484.
|
[65] |
BRITTAIN M, WEI Peng. Autonomous aircraft sequencing and separation with hierarchical deep reinforcement learning[C]//FAA & amp; amp; EUROCONTROL. The 8th International Conference for Research in Air Transportation. Barcelona: ICRAT, 2018: 1-8.
|
[66] |
XUE Min, RIOS J, SILVA J, et al. Fe3: an evaluation tool for low-altitude air traffic operations[C]//AIAA. 2018Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-13.
|
[67] |
BELOBABA P, ODONI A, BARNHART C. The global airline industry[R]. Cambridge: John Wiley & amp; amp; Sons, 2015.
|
[68] |
BALL M O, HOFFMAN R, ODONI A R, et al. A stochastic integer program with dual network structure and its application to the ground-holding problem[J]. Operations Research, 2003, 51(1): 167-171. doi: 10.1287/opre.51.1.167.12795
|
[69] |
ZHU Guo-dong, WEI Peng, HOFFMAN R, et al. Riskhedged multistage stochastic programming model for setting flow rates in collaborative trajectory options programs(CTOP)[C]//AIAA. Science and Technology Forum and Exposition. Reston: AIAA, 2019: 1-16.
|
[70] |
HOFFMAN R, HACKNEY B, WEI P, et al. Enhanced stochastic optimization model(ESOM)for setting flow rates in collaborative trajectory options programs(CTOP)[C]//AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-16.
|
[71] |
ZHU Guo-dong, WEI Peng, HOFFMAN R, et al. Centralized disaggregate stochastic allocation models for collaborative trajectory options program(CTOP)[C]//IEEE. 37th AIAA/IEEE Digital Avionics Systems Conference(DASC). New York: IEEE, 2018: 1-10.
|
[72] |
SILVA C, JOHNSON W R, SOLIS E, et al. VTOL urban air mobility concept vehicles for technology development[C]//AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-10.
|
[73] |
PRADEEP P, WEI Peng. Energy-efficient arrival with RTA constraint for multirotor eVTOL in urban air mobility[J]. Journal of Aerospace Information Systems, 2019, 16(7): 263-277. doi: 10.2514/1.I010710
|
[74] |
PRADEEP P, WEI Peng. Energy optimal speed profile for arrival of tandem tilt-wing eVTOL aircraft with RTA constraint[C]//IEEE. 2018CSAA Guidance, Navigation and Control Conference(CGNCC). New York: IEEE, 2018: 1-6.
|
[75] |
陈志杰. 未来空中交通管制系统发展面临的技术挑战[J]. 指挥信息系统与技术, 2016, 7(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXT201606002.htm
CHEN Zhi-jie. Technological chanllenges of future air traffic control system development[J]. Control Information System and Technology, 2016, 7(6): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXT201606002.htm
|
[76] |
PATHIYIL L, LOW K H, SOON B H, et al. Enabling safe operations of unmanned aircraft systems in an urban environment: apreliminary study[C]//German Institute of Navigation. The International Symposium on Enhanced Solutions for Aircraft and Vehicle Surveillance Applications. Berlin: German Institute of Navigation, 2016: 1-10.
|