Citation: | NEI Jing-xin, TAN Wei, MU Wen-long, LUAN Jian-ze. Effect of hygrothermal aging on transverse impact mechanical properties of BFRP adhesive joints[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 134-144. doi: 10.19818/j.cnki.1671-1637.2020.04.010 |
[1] |
RIBEIRO M L, TITA V, VANDEPITTE D. A new damage model for composite laminates[J]. Composite Structures, 2012, 94(2): 635-642. doi: 10.1016/j.compstruct.2011.08.031
|
[2] |
LU Zhang-yu, XIAN Gui-jun. Combined effects of sustained tensile loading and elevated temperatures on the mechanical properties of pultruded BFRP plates[J]. Construction and Building Materials, 2017, 150: 310-320. doi: 10.1016/j.conbuildmat.2017.06.026
|
[3] |
FIORE V, ALAGNA F, DI BELLA G, et al. On the mechanical behavior of BFRP to aluminum AA6086 mixed joints[J]. Composites Part B: Engineering, 2013, 48: 79-87. doi: 10.1016/j.compositesb.2012.12.009
|
[4] |
FIORE V, ALAGNA F, GALTIERI G, et al. Effect of curing time on the performances of hybrid/mixed joints[J]. Composites Part B: Engineering, 2013, 45: 911-918. doi: 10.1016/j.compositesb.2012.05.016
|
[5] |
ALTALMAS A, EL REFAI A, ABED F. Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions[J]. Construction and Building Materials, 2015, 81: 162-171. doi: 10.1016/j.conbuildmat.2015.02.036
|
[6] |
HESHMATI M, HAGHANI R, AL-EMRANI M, et al. Durability of bonded FRP-to-steel joints: effects of moisture, de-icing salt solution, temperature and FRP type[J]. Composites Part B: Engineering, 2017, 119: 153-167. doi: 10.1016/j.compositesb.2017.03.049
|
[7] |
谭伟, 那景新, 范以撒, 等. 考虑温度和载荷影响的动车信息窗粘接结构寿命预测[J]. 交通运输工程学报, 2019, 19(6): 101-110. doi: 10.3969/j.issn.1671-1637.2019.06.011
TAN Wei, NA Jing-xin, FAN Yi-sa, et al. Adhesive structure life prediction of EMU information window considering influence of temperature and load[J]. Journal of Traffic and Transportion Engineering, 2019, 19(6): 101-110. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.06.011
|
[8] |
JOHN S J, KINLOCH A J, MATTHEWS F L. Measuring and predicting the durability of bonded carbon fibre/epoxy composite joints[J]. Composites, 1991, 22(2): 121-127. doi: 10.1016/0010-4361(91)90670-C
|
[9] |
ZHANG Fan, YANG Xin, WANG Hui-ping, et al. Durability of adhesively-bonded single lap-shear joints in accelerated hygrothermal exposure for automotive applications[J]. International Journal of Adhesion and Adhesives, 2013, 44: 130-137. doi: 10.1016/j.ijadhadh.2013.02.009
|
[10] |
ZHANG Fan, WANG Hui-ping, HICKS C, et al. Experimental study of initial strengths and hygrothermal degradation of adhesive joints between thin aluminum and steel substrates[J]. International Journal of Adhesion and Adhesives, 2013, 43: 14-25. doi: 10.1016/j.ijadhadh.2013.01.001
|
[11] |
KORTA J, MLYNIEC A, UHL T. Experimental and numerical study on the effect of humidity-temperature cycling on structural multi-material adhesive joints[J]. Composites Part B: Engineering, 2015, 79: 621-630. doi: 10.1016/j.compositesb.2015.05.020
|
[12] |
POPINEAU S, RONDEAU-MOURO C, SULPICE-GAILLET C, et al. Free/bound water absorption in an epoxy adhesive[J]. Polymer, 2005, 46(24): 10733-10740. doi: 10.1016/j.polymer.2005.09.008
|
[13] |
SAYER M, BEKTAS N B, SAYMAN O. An experimental investigation on the impact behavior of hybrid composite plates[J]. Steel Construction, 2010, 92(5): 1256-1262.
|
[14] |
PARK H, KIM H. Damage resistance of single lap adhesive composite joints by transverse ice impact[J]. International Journal of Impact Engineering, 2010, 37(2): 177-184. doi: 10.1016/j.ijimpeng.2009.08.005
|
[15] |
REIS P N B, SOARES J R L, PEREIRA A M, et al. Effect of adherends and environment on static and transverse impact response of adhesive lap joints[J]. Theoretical and Applied Fracture Mechanics, 2015, 80: 79-86. doi: 10.1016/j.tafmec.2015.07.004
|
[16] |
VAIDYA U K, GAUTAM A R S, HOSUR M, et al. Experimental-numerical studies of transverse impact response of adhesively bonded lap joints in composite structures[J]. International Journal of Adhesion and Adhesives, 2006, 26(3): 184-198. doi: 10.1016/j.ijadhadh.2005.03.013
|
[17] |
KIM J S, CHUNG S K. A study on the low-velocity impact response of laminates for composite railway bodyshells[J]. Composite Structures, 2007, 77(4): 484-492. doi: 10.1016/j.compstruct.2005.08.020
|
[18] |
SAYMAN O, ARIKAN V, DOGAN A, et al. Failure analysis of adhesively bonded composite joints under transverse impact and different temperatures[J]. Composites Part B: Engineering, 2013, 54: 409-414. doi: 10.1016/j.compositesb.2013.06.017
|
[19] |
SAYMAN O, SOYKOK I F, DOGAN T, et al. Effects of axial impacts at different temperatures on failure response of adhesively bonded woven fabric glass fiber/epoxy composite joints[J]. Journal of Composite Materials, 2014, 49(11): 1331-1344.
|
[20] |
APALAK M K, YILDIRIM M. Effect of adhesive thickness on transverse low-speed impact behavior of adhesively bonded similar and dissimilar clamped plates[J]. Journal of Adhesion Science and Technology, 2011, 25(19): 2587-2613. doi: 10.1163/016942411X556015
|
[21] |
KIM H, KAYIR T, MOUSSEAU S L. Mechanisms of damage formation in transversely impacted glass-epoxy bonded, lap joints[J]. Journal of Composite Materials, 2005, 39(39): 2039-2052.
|
[22] |
AKDERYA T, KEMIKIOGLU U, SAYMAN O. Effects of thermal ageing and impact loading on tensile properties of adhesively bonded fibre/epoxy composite joints[J]. Composites Part B: Engineering, 2016, 95: 117-122. doi: 10.1016/j.compositesb.2016.03.073
|
[23] |
SILVA L F M D, ADAMS R D. Techniques to reduce the peel stresses in adhesive joints with composites[J]. International Journal of Adhesion and Adhesives, 2007, 27(3): 227-235. doi: 10.1016/j.ijadhadh.2006.04.001
|
[24] |
SILVA L F M D, LOPES M J C Q. Joint strength optimization by the mixed-adhesive technique[J]. International Journal of Adhesion and Adhesives, 2009, 29(5): 509-514. doi: 10.1016/j.ijadhadh.2008.09.009
|
[25] |
NA Jing-xin, MU Wen-long, QIN Guo-feng, et al. Effect of temperature on the mechanical properties of adhesively bonded basalt FRP-aluminum alloy joints in the automotive industry[J]. International Journal of Adhesion and Adhesives, 2018, 85: 138-148. doi: 10.1016/j.ijadhadh.2018.05.027
|
[26] |
RIEGER J. The glass transition temperature Tg of polymers—comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum)[J]. Polymer Testing, 2001, 20(2): 199-204. doi: 10.1016/S0142-9418(00)00023-4
|
[27] |
PLAZEK D J, FRUND Z N. Epoxy resins (DGEBA): the curing and physical aging process[J]. Journal of Polymer Science Part B: Polymer Physics, 1990, 28(4): 431-448. doi: 10.1002/polb.1990.090280401
|
[28] |
BUCH X, SHANAHAN M E R. Influence of the gaseous environment on the thermal degradation of a structural epoxy adhesive[J]. Journal of Applied Polymer Science, 2000, 76(7): 987-992. doi: 10.1002/(SICI)1097-4628(20000516)76:7<987::AID-APP1>3.0.CO;2-1
|
[29] |
QIN Guo-feng, NA Jing-xin, MU Wen-long, et al. Effect of continuous high temperature exposure on the adhesive strength of epoxy adhesive, CFRP and adhesively bonded CFRP-aluminum alloy joints[J]. Composites Part B: Engineering, 2018: 43-55.
|
[30] |
肖琳. 高低温循环作用后CFRP层合板力学性能演变研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
XIAO Lin. Study on mechanical properties evolution of CFRP laminates after high and low temperature cycling[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese).
|