Citation: | YANG Lan, ZHAO Xiang-mo, WU Guo-yuan, XU Zhi-gang, MATTHEW Barth, HUI Fei, HAO Peng, HAN Meng-jie, ZHAO Zhou-qiao, FANG Shan, JING Shou-cai. Review on connected and automated vehicles based cooperative eco-driving strategies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 58-72. doi: 10.19818/j.cnki.1671-1637.2020.05.004 |
[1] |
郑昕, FRIDLEY D, 周南, 等. 国际石油消费趋势与政策回顾[R]. 旧金山: 劳伦斯伯克利国家实验室, 2019. ZHENG Xin, FRIDLEY D, ZHOU Nan, et al. Review of international oil consumption trends and policies[R]. San Francisco: Lawrence Berkeley National Laboratory, 2019. (in Chinese).
|
[2] |
ERSAL T, KOLMANOVSKY I, MASOUD N, et al. Connected and automated road vehicles: state of the art and future challenges[J]. Vehicle System Dynamics, 2020, 58(5): 672-704. doi: 10.1080/00423114.2020.1741652
|
[3] |
GARCIA-CASTRO A, MONZON A, VALDES C, et al. Modeling different penetration rates of eco-driving in urban areas: impacts on traffic flow and emissions[J]. International Journal of Sustainable Transportation, 2017, 11(4): 282-294. doi: 10.1080/15568318.2016.1252972
|
[4] |
XU Zhi-gang, WEI Tao, EASA S, et al. Modelling relationship between truck fuel consumption and driving behavior using data from internet of vehicles[J]. Computer-Aid Civil and Infrastructure Engineering, 2018, 33: 209-219. doi: 10.1111/mice.12344
|
[5] |
付锐, 张雅丽, 袁伟. 生态驾驶研究现状及展望[J]. 中国公路学报, 2019, 32(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903002.htm
FU Rui, ZHANG Ya-li, YUAN Wei. Progress and prospect in research on eco-driving[J]. China Journal of Highway Transport, 2019, 32(3): 1-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903002.htm
|
[6] |
BROOKHUIS K, DE WAARD D. Limiting speed, towards an intelligent speed adapter (ISA)[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 1999, 2(2): 81-90. doi: 10.1016/S1369-8478(99)00008-X
|
[7] |
CHEN Yu-zhong, FENG Yong-qin, YIN Yan, et al. Improvement in design and manufacture of automobile based on ergonomics theory[J]. Applied Mechanics and Materials, 2014, 505-506: 292-296. doi: 10.4028/www.scientific.net/AMM.505-506.292
|
[8] |
BARKENBUS J N. Eco-driving: an overlooked climate change initiative[J]. Energy Policy, 2010, 38(2): 762-769. doi: 10.1016/j.enpol.2009.10.021
|
[9] |
BARTH M, BORIBOONSOMISN K. Energy and emissions impacts of a freeway-based dynamic eco-driving system[J]. Transportation Research Part D: Transport and Environment, 2009, 14(6): 400-410. doi: 10.1016/j.trd.2009.01.004
|
[10] |
TAIEBAT M, BROWN A L, SAFFORD H R, et al. A review on energy, environmental, and sustainability implications of connected and automated vehicles[J]. Environmental Science and Technology, 2018, 52: 11449-11465.
|
[11] |
李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001
LI Ke-qiang, DAI Yi-fan, LI Sheng-bo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal Automotive Safety and Energy, 2017, 8(1): 1-14. (in Chinese). doi: 10.3969/j.issn.1674-8484.2017.01.001
|
[12] |
PANDAZIS J. eCoMove: cooperative ITS for green mobility[C]//IEEE. 18th European Wireless Conference. New York: IEEE, 2012: 1-5.
|
[13] |
PACHECO-TORGAL F. Eco-efficient construction and building materials research under the EU framework programme horizon 2020[J]. Construction and Building Materials, 2014, 51: 151-162. doi: 10.1016/j.conbuildmat.2013.10.058
|
[14] |
MILLER K, DRUMWRIGHT L G, KOSTREBA A, et al. Applications for the environment: real-time information synthesis (AERIS)[R]. Washington DC: U. S. Department of Transportation, 2011.
|
[15] |
LIU Xian-bing, YAMAMOTO R, SUK S. A survey of company's awareness and approval of market-based instruments for energy saving in Japan[J]. Journal of Cleaner Production. 2014, 78: 35-47. doi: 10.1016/j.jclepro.2014.05.005
|
[16] |
XIA Hai-tao, BORIBOONSOMSIN K, SCHWEIZER F, et al. Field operational testing of eco-approach technology at a fixed-time signalized intersection[C]//IEEE. 15th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2012: 188-193.
|
[17] |
郭嘉文. 国家"十三五"交通领域科技创新专项规划发布[J]. 广东交通, 2017, 3: 33-34. doi: 10.3969/j.issn.1671-8496.2017.03.008
GUO Jia-wen. Release of specialfund for traffic scientific and technological innovation of the "national 13th five-year plan"[J]. Guangdong Transportation, 2017, 3: 33-34. (in Chinese). doi: 10.3969/j.issn.1671-8496.2017.03.008
|
[18] |
黎丽, 谢伟, 魏书传, 等. 中国制造2025[J]. 金融经济, 2015(13): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JRJJ201513004.htm
LI Li, XIE Wei, WEI Shu-chuan, et al. Made in China 2025 strategy[J]. Financial Economy, 2015(13): 10-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JRJJ201513004.htm
|
[19] |
HOEKMAN S K, BROCH A, LIU Xiao-wei. Environmental implications of higher ethanol production and use in the U. S. : a literature review. Part Ⅰ—impacts on water, soil, and air quality[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3159-3177. doi: 10.1016/j.rser.2017.05.052
|
[20] |
毛保华, 贾顺平, 孙启鹏, 等. 不同交通方式能耗与排放因子及其可比性研究[R]. 北京: 中国综合交通研究中心, 2009. MAO Bao-hua. JIA Shun-ping, SUN Qi-peng. Energy consumption, emissions and their comparison among different transport modes[R]. Beijing: Integrated Transport Research Center of China, 2009. (in Chinese).
|
[21] |
CHEN Yu-che, MEIER A. Fuel consumption impacts of auto roof racks[J]. Energy Policy, 2016, 92, 325-333. doi: 10.1016/j.enpol.2016.02.031
|
[22] |
WU Guo-yuan, BORIBOONSOMSIN K, XIA Hai-tao, et al. Supplementary benefits from partial vehicle automation in an ecoapproach and departure application at signalized intersections[J]. Transportation Research Record. 2014(2424): 66-75.
|
[23] |
MUSLIM N H, KEYVANFAR A, SHAFAGHAT A, et al. Green driver: travel behaviors revisited on fuel saving and less emission[J]. Sustainability, 2018, 10: 1-30. doi: 10.3390/su10020001
|
[24] |
DEVLIEGER I, DE KEUKELEERE D, KRETZSCHMAR J G. Environmental effects of driving behavior and congestion related to passenger cars[J]. Atmospheric Environment, 2000, 34(27): 4649-4655. doi: 10.1016/S1352-2310(00)00217-X
|
[25] |
ZORROFI S, FILIZADEH S, ZANETEL P. A simulation study of the impact of driving patterns and driver behavior on fuel economy of hybrid transit buses[C]//IEEE. Proceedings of the Vehicle Power and Propulsion Conference. New Yrok: IEEE, 2009: 572-577.
|
[26] |
JEFFREY G, MATTHEW E, WITT S. Analyzing vehicle fuel saving opportunities through intelligent driver feedback[J]. SAE International Journal of Passenger Cars, 2012, 5(2): 450-461.
|
[27] |
SHANKAR R, MARCO J. Method for estimating the energy consumption of electric vehicles and plug-in hybrid electric vehicles under real-world driving conditions[J]. IET Intelligent Transport Systems, 2013, 7(1): 138-150. doi: 10.1049/iet-its.2012.0114
|
[28] |
FAGNANT D J, KOCKELMAN K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations[J]. Transportation Research Part A: Policy and Practice, 2015, 77: 167-181. doi: 10.1016/j.tra.2015.04.003
|
[29] |
TU Ran, ALFASEEH L, DJAVADIAN S, et al. Quantifying the impacts of dynamic control in connected and automated vehicles on greenhouse gas emissions and urban NO2 concentrations[J]. Transportation Research Part D: Transport and Environment, 2019, 73: 142-151. doi: 10.1016/j.trd.2019.06.008
|
[30] |
RIOS-TORRES J, MALIKOPOULOS A A. Impact of partial penetrations of connected and automated vehicles on fuel consumption and traffic flow[J]. IEEE Transactions on Intelligent Vehicles, 2018: 3(4): 453-462. doi: 10.1109/TIV.2018.2873899
|
[31] |
SCHITO P, BRAGHIN F. Numerical and experimental investigation on vehicles in platoon[J]. SAE International Journal of Commercial Vehicles, 2012, 5(1): 63-71. doi: 10.4271/2012-01-0175
|
[32] |
WADUD Z, MACKENZIE D, LEIBY P. Help or hindrance?The travel, energy and carbon impacts of highly automated vehicles[J]. Transportation Research Part A: Policy and Practice, 2016, 86: 1-18. doi: 10.1016/j.tra.2015.12.001
|
[33] |
TIAN Dan-yang, WU Guo-yuan, BORIBOONSOMSIN K, et al. Performance measurement evaluation framework and co-benefit/tradeoff analysis for connected and automated vehicles (CAV) applications: a survey[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 10(3): 110-122. doi: 10.1109/MITS.2018.2842020
|
[34] |
ASADI B, VAHIDI A. Predictive cruise control: utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 707-714. doi: 10.1109/TCST.2010.2047860
|
[35] |
HOMCHAUDHURI B, VAHIDI A, PISU P, et al. Fast model predictive control-based fuel efficient control strategy for a group of connected vehicles in urban road conditions[J]. IEEE Transactions on Control Systems Technology, 2017, 25(2): 760-767. doi: 10.1109/TCST.2016.2572603
|
[36] |
HOMCHAUDHURI B, VAHIDI A, PISU P. A fuel economic model predictive control strategy for a group of connected vehicles in urban roads[C]∥IEEE. Proceedings of the American Control Conference. New York: IEEE, 2015: 2741-2746.
|
[37] |
RAKHA H, KAMALANATHSHARMA R K. Eco-driving at signalized intersections using V2I communication[C]//IEEE. 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2011: 341-346.
|
[38] |
ALA M V, YANG Hao, RAKHA H. Modeling evaluation of eco-cooperative adaptive cruise control in vicinity of signalized intersections[J]. Transportation Research Record, 2016(2559): 108-119.
|
[39] |
YANG Hao, RAKHA H, ALA M V. Eco-cooperative adaptive cruise control at signalized intersections considering queue effects[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1575-1585.
|
[40] |
BARTH M, MANDAVA S, BORIBOONSOMSIN K, et al. Dynamic eco-driving for arterial corridors[C]//IEEE. 2011 IEEE Forum on Integrated and Sustainable Transportation Systems. New York: IEEE, 2011: 182-188.
|
[41] |
YE Fei, HAO Peng, QI Xue-wei, et al. Prediction-based eco-approach and departure at signalized intersections with speed forecasting on preceding vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(4): 1378-1389. doi: 10.1109/TITS.2018.2856809
|
[42] |
ALTAN O D, WU Guo-yuan, BARTH M J, et al. Glide path: eco-friendly automated approach and departure at signalized intersections[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(4): 266-277. doi: 10.1109/TIV.2017.2767289
|
[43] |
王建强, 王海鹏, 刘佳熙, 等. 基于车路一体化的交叉口车辆驾驶辅助系统[J]. 中国公路学报, 2013, 26(4): 169-175, 183. doi: 10.3969/j.issn.1001-7372.2013.04.023
WANG Jian-qiang, WANG Hai-peng, LIU Jia-xi, et al. Intersection vehicle driving assistance system based on vehicle-to-infrastructure communication[J]. China Journal of Highway and Transport. 2013, 26(4): 169-175, 183. (in Chinese). doi: 10.3969/j.issn.1001-7372.2013.04.023
|
[44] |
XU Biao, ZHANG Fang, WANG Jian-qiang, et al. B & amp; amp; B algorithm-based green light optimal speed advisory applied to contiguous intersections[C]//COTA. International Conference of Transportation Professional. Beijing: COTA, 2015: 363-375.
|
[45] |
徐彪, 张放, 王建强. 连续交叉路口通行辅助系统[J]. 汽车工程, 2016, 38(11): 1344-1350. doi: 10.3969/j.issn.1000-680X.2016.11.011
XU Biao, ZHANG Fang, WANG Jian-qiang. An assistance system for crossing successive intersections[J]. Automotive Engineering, 2016, 38(11): 1344-1350. (in Chinese). doi: 10.3969/j.issn.1000-680X.2016.11.011
|
[46] |
赵贺锋. 车路协作式交叉口车速引导技术研究[D]. 北京: 北京工业大学, 2017.
ZHAO He-feng. Research on speed guidance technology of cooperative vehicle infrastructure system intersection[D]. Beijing: Beijing University of Technology, 2017. (in Chinese).
|
[47] |
靳秋思, 宋国华, 叶蒙蒙, 等. 车辆通过交叉口的生态驾驶轨迹优化研究[J]. 安全与环境工程, 2015, 22(3): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201503015.htm
JIN Qiu-si, SONG Guo-hua, YE Meng-meng, et al. Optimization of eco-driving trajectories at intersections for energy saving and emission reduction[J]. Safety and Environmental Engineering, 2015, 22(3): 75-82. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201503015.htm
|
[48] |
FANG Shan, YANG Lan, WANG Tian-qi, et al. Trajectory planning method for mixed vehicles considering traffic stability and fuel consumption at the signalized intersection[J]. Journal of Advanced Transportation, 2020, 11: 1-10.
|
[49] |
SEREDYNSKI M, MAZURCZYK W, KHADRAOUI D. Multi-segment green light optimal speed advisory[C]//IEEE. IEEE 27th International Symposium on Parallel and Distributed Processing Workshops and PhD Forum. New York: IEEE, 2013: 459-465.
|
[50] |
MAHLER G, VAHIDI A. An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of traffic-signal timing[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2516-2523. doi: 10.1109/TITS.2014.2319306
|
[51] |
ALSABAAN M, NAIK K, KHALIFA T. Optimization of fuel cost and emissions using V2V communication[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1449-1461. doi: 10.1109/TITS.2013.2262175
|
[52] |
LI Jin-jian, DRIDI M, EL-MOUDNI A. Multi-vehicles green light optimal speed advisory based on the augmented lagrangian genetic algorithm[C]//IEEE. 17th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2014: 2434-2439.
|
[53] |
HE Xiao-zheng, LIU H X, LIU Xiao-bo. Optimal vehicle speed trajectory on a signalized arterial with consideration of queue[J]. Transportation Research Part C: Emerging Technologies, 2015, 61: 106-120. doi: 10.1016/j.trc.2015.11.001
|
[54] |
WAN Nian-feng, VAHIDI A, LUCKOW A. Optimal speed advisory for connected vehicles in arterial roads and the impact on mixed traffic[J]. Transportation Research Part C: Emerging Technologies, 2016, 69: 548-563. doi: 10.1016/j.trc.2016.01.011
|
[55] |
廖若桦. 车路协同环境下信号交叉口车队生态驾驶研究[D]. 北京: 北京交通大学, 2018.
LIAO Ruo-hua. Eco-driving of vehicle platoons in cooperative vehicle-infrastructure system at signalized intersections[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese).
|
[56] |
XIA H, BORIBOONSOMSIN K, BARTH M. Dynamic eco-driving for signalized arterial corridors and its indirect network-wide energy/emissions benefits[J]. Journal of Intelligent Transportation Systems, 2013, 17(1): 31-41. doi: 10.1080/15472450.2012.712494
|
[57] |
TONG Yue, ZHAO Lei, LI Li, et al. Stochastic programming model for oversaturated intersection signal timing[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 474-486. doi: 10.1016/j.trc.2015.01.019
|
[58] |
YU Chun-hui, FENG Yi-heng, LIU H X, et al. Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections[J]. Transportation Research Part B: Methodological, 2018, 112: 89-112. doi: 10.1016/j.trb.2018.04.007
|
[59] |
TSUGAWA S, JESCHKE S, SHLADOVER S E. A review of truck platooning projects for energy savings[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 68-77. doi: 10.1109/TIV.2016.2577499
|
[60] |
VAN DEHOEF S, JOHANSSON K H, DIMAROGONAS D V. Fuel efficient en route formation of truck platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1): 102-112. doi: 10.1109/TITS.2017.2700021
|
[61] |
WANG Zi-ran, WU Guo-yuan, BARTH M J. Cooperative eco-driving at signalized intersections in a partially connected and automated vehicle environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 2029-2038. doi: 10.1109/TITS.2019.2911607
|
[62] |
HAO Peng, WANG Zi-ran, WU Guo-yuan, et al. Intra-platoon vehicle sequence optimization for eco-cooperative adaptive cruise control[C]//IEEE. IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2017: 1-6.
|
[63] |
TURRI V, BESSELINK B, JOHANSSON K H. Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 12-28. doi: 10.1109/TCST.2016.2542044
|
[64] |
VAJEDI M, AZAD N L. Ecological adaptive cruise controller for plug-in hybrid electric vehicles using nonlinear model predictive control[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(1): 113-122. doi: 10.1109/TITS.2015.2462843
|
[65] |
ALMUTAIRI F, YANG Hao, RAKHA H. Eco-cooperative adaptive cruise control at multiple signalized intersections: network-wide evaluation and sensitivity analysis[C]//IEEE. 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). New York: IEEE, 2017: 520-525.
|
[66] |
YANG Hao, ALMUTAIRI F, ALA M V. Eco-cooperative adaptive cruise control at multiple signalized intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1575-1585.
|
[67] |
SCHMIDT G K, POSCH B. A two-layer control scheme for merging of automated vehicles[C]//IEEE. The 22nd IEEE Conference on Decision and Control. New Yrok: IEEE, 1983: 495-500.
|
[68] |
RIOS-TORRES J, MALIKOPOULOS A A, PISU P. Online optimal control of connected vehicles for efficient traffic flow at merging roads[C]∥IEEE. IEEE 18th International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 2432-2437.
|
[69] |
RIOS-TORRES J, MALIKOPOULOS A A. Automated and cooperative vehicle merging at highway on-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 780-789. doi: 10.1109/TITS.2016.2587582
|
[70] |
AWAL T, KULIK L, RAMAMOHANRAO K. Optimal traffic merging strategy for communication- and sensor-enabled vehicles[C]//IEEE. 16th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2013: 1468-1474.
|
[71] |
JING Shou-cai, HUI Fei, ZHAO Xiang-mo, et al. Cooperative game approach to optimal merging sequence and on-ramp merging control of connected and automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(11): 4234-4244. doi: 10.1109/TITS.2019.2925871
|
[72] |
XIE Yuan-chang, ZHANG Hui-xing, GARTNER N H, et al. Collaborative merging strategy for freeway ramp operations in a connected and autonomous vehicles environment[J]. Journal of Intelligent Transportation Systems, 2017, 21(2): 136-147. doi: 10.1080/15472450.2016.1248288
|
[73] |
王东柱, 陈艳艳, 马建明. 车联网环境下的高速公路合流区协调控制方法及效果评价[J]. 公路交通科技, 2016, 33(9): 99-105. doi: 10.3969/j.issn.1002-0268.2016.09.016
WANG Dong-zhu, CHEN Yan-yan, MA Jian-ming. A method for coordinated controlling vehicles in expressway merge area in connected vehicles environment and evaluation[J]. Journal of Highway and Transportation Research and Development, 2016, 33(9): 99-105. (in Chinese). doi: 10.3969/j.issn.1002-0268.2016.09.016
|
[74] |
UNO A, SAKAGUCHI T, TSUGAWA S. A merging control algorithm based on inter-vehicle communication[C]//IEEE. Proceedings of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems. New York: IEEE, 1999: 783-787.
|
[75] |
LU Xiao-yun, HEDRICK K J. Longitudinal control algorithm for automated vehicle merging[C]//IEEE. Proceedings of the 39th IEEE Conference on Decision and Control. New York: IEEE, 2000: 450-455.
|
[76] |
ZHOU Yu, CHOLETTE M E, BHASKAR A, et al. Optimal vehicle trajectory planning with control constraints and recursive implementation for automated on-ramp merging[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(9): 1-12.
|
[77] |
WANG Zi-ran, WU Guo-yuan, BORIBOONSOMSIN K, et al. Cooperative ramp merging system: agent-based modeling and simulation using game engine[J]. SAE International Journal of Connected and Automated Vehicles, 2019, 2(2): 115-128.
|
[78] |
张存保, 李劲松, 黄传明, 等. 基于车路协同的高速公路入口匝道车辆汇入引导方法[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(4): 537-542. doi: 10.3963/j.issn.2095-3844.2017.04.001
ZHANG Cun-bao, LI Jin-song, HUANG Chuan-ming, et al. The method of vehicle merging guidance at freeway on-ramp based on cooperative vehicle infrastructure system[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2017, 41(4): 537-542. (in Chinese). doi: 10.3963/j.issn.2095-3844.2017.04.001
|
[79] |
LAN Xiao-dong, CAIRANO S D. Continuous curvature path planning for semi-autonomous vehicle maneuvers using RRT[C]//IEEE. 2015 European Control Conference (ECC). New York: IEEE, 2015: 2360-2365.
|
[80] |
YANG I, KIM H J, JEON W H, et al. Development of realistic shortest path algorithm considering lane changes[J]. Journal of Advanced Transportation, 2016, 50(4): 541-551. doi: 10.1002/atr.1359
|
[81] |
ZIEGLER J, STILLER C. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios[J]. Intelligent Robots and Systems, 2009, 5: 1879-1884.
|
[82] |
LUO Yu-gong, XIANG Yong, CAO Kun, et al. A dynamic automated lane change maneuver based on vehicle-to-vehicle communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 87-102. doi: 10.1016/j.trc.2015.11.011
|
[83] |
LI Bai, ZHANG You-min, FENG Yi-heng, et al. Balancing computation speed and quality: a decentralized motion planning method for cooperative lane changes of connected and automated vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3 (3), 340-350. doi: 10.1109/TIV.2018.2843159
|
[84] |
LI Bai, JIA Ning, LI Pu, et al. Incrementally constrained dynamic optimization: a computational framework for lane change motion planning of connected and automated vehicles[J]. Journal of Intelligent Transportation Systems, 2019, 23(6): 1-12.
|
[85] |
HUANG Zi-chao, WU Qing-qing, MA Jie, et al. An APF and MPC combined collaborative driving controller using vehicular communication technologies[J]. Chaos Solitons and Fractals, 2016, 89: 232-242. doi: 10.1016/j.chaos.2015.11.009
|
[86] |
XU Guo-qing, LIU Li, OU Yong-sheng, et al. Dynamic modeling of driver control strategy of lane-change behavior and trajectory planning for collision prediction[J]. IEEE Transactions on Intelligent Transportation System, 2012, 13(3): 1138-1155. doi: 10.1109/TITS.2012.2187447
|
[87] |
HOEL C J, WOL K, LAINE L. Automated speed and lane change decision making using deep reinforcement learning[C]//IEEE. IEEE 21th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2018: 2148-2155.
|
[88] |
WANG Pin, CHAN C Y, DE LA FORTELLE A. A reinforcement learning based approach for automated lane change maneuvers[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1379-1384.
|
[89] |
LIU Mei, SHI Jing. A cellular automata traffic flow model combined with a BP neural network based microscopic lane changing decision model[J]. Journal of Intelligent Transportation Systems, 2019, 23(4): 309-318. doi: 10.1080/15472450.2018.1462176
|
[90] |
AHN K, RAKHA H A. Network-wide impacts of eco-routing strategies: a large-scale case study[J]. Transportation Research Part D: Transport and Environment, 2013, 25: 119-130. doi: 10.1016/j.trd.2013.09.006
|
[91] |
ALFASEEH L, FAROOQ B. Multi-factor taxonomy of eco-routing models and future outlook[J]. Journal of Sensors, 2020, 3: 1-10.
|
[92] |
RAKHA H A, AHN K, MORAN K. Integration framework for modeling eco-routing strategies: logic and preliminary results[J]. International Journal of Transportation Science and Technology, 2012, 1(3): 259-274. doi: 10.1260/2046-0430.1.3.259
|
[93] |
SUN Jie, LIU H X. Stochastic eco-routing in a signalized traffic network[J]. Transportation Research Procedia, 2015, 7: 110-128. doi: 10.1016/j.trpro.2015.06.007
|
[94] |
BANDEIRA J M, FERNANDES P, FONTES T, et al. Exploring multiple eco-routing guidance strategies in a commuting corridor[J]. International Journal of Sustainable Transportation, 2018, 12(1): 53-65. doi: 10.1080/15568318.2017.1328545
|
[95] |
TZENG G H, CHEN C H. Multi objective decision making for traffic assignment[J]. IEEE Transactions on Engineering Management, 1993, 40(2): 180-187. doi: 10.1109/17.277411
|
[96] |
LUO Li-hua, GE Ying-en, ZHANG Fang-wei, et al. Real-time route diversion control in a model predictive control framework with multiple objectives: traffic efficiency, emission reduction and fuel economy[J]. Transportation Research Part D: Transport and Environment, 2016, 48: 332-356. doi: 10.1016/j.trd.2016.08.013
|
[97] |
LONG Jian-cheng, CHEN Jia-xu, SZETO W Y, et al. Link-based system optimum dynamic traffic assignment problems with environmental objectives[J]. Transportation Research Part D: Transport and Environment, 2018, 60: 56-75. doi: 10.1016/j.trd.2016.06.003
|
[98] |
AZIZH M A, UKKUSURI S V. Integration of environmental objectives in a system optimal dynamic traffic assignment model[J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(7): 494-511. doi: 10.1111/j.1467-8667.2012.00756.x
|
[99] |
GUO Li-ya, HUANG Shan, SADEK A W. an evaluation of environmental benefits of time-dependent green routing in the greater Buffalo-Niagara region[J]. Journal of Intelligent Transportation Systems, 2013, 17(1): 18-30. doi: 10.1080/15472450.2012.704336
|
[100] |
ELBERY A, RAKHA H, EL-NAINAY M, et al. Eco-routing using V2I communication: system evaluation[C]//IEEE. IEEE 18th International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 71-76.
|
[101] |
HOUSHMAND A, WOLLENSTEIN-BETECH S, CASSANDRAS C G. The penetration rate effect of connected and automated vehicles in mixed traffic routing[C]//IEEE. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). New York: IEEE: 1755-1760.
|
[102] |
BORIBOONSOMSIN K, BARTH M J, ZHU Wei-hua, et al. Eco-routing navigation system based on multisource historical and real-time traffic information[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1694-1704. doi: 10.1109/TITS.2012.2204051
|
[103] |
ALFASEEH L, DJAVADIAN S, FAROOQ B. Impact of distributed routing of intelligent vehicles on urban traffic[C]//IEEE. 2018 IEEE International Smart Cities Conference (ISC2). New York: IEEE, 2018: 1-7.
|
[104] |
DJAVADIAN S, FAROOQ B. Distributed dynamic routing using network of intelligent intersections[C]//IEEE. ITS Canada ACGM. New York: IEEE, 2018: 56-63.
|
[105] |
WANG Zi-ran, LIAO Xi-shun, WANG Chao, et al. Driver behavior modeling using game engine and real vehicle: a learning-based approach[J]. IEEE Transactions on Intelligent Vehicles, 2020, 1: 1-12.
|
[106] |
FENG Yi-heng, YU Chun-hui, XU Shao-bing, et al. An augmented reality environment for connected and automated vehicle testing and evaluation[C]//IEEE. IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1549-1554.
|
[107] |
WU Guo-yuan, BROWN D, ZHAO Zhuo-qiao, et al, Dyno-in-the-loop: an innovative hardware-in-the-loop development and testing platform for emerging mobility technologies[J]. SAE Technical Paper, 2020, 1: 1-10.
|
[108] |
赵祥模, 承靖钧, 徐志刚, 等. 基于整车在环仿真的自动驾驶汽车室内快速测试平台[J]. 中国公路学报, 2019, 32(6): 124-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906014.htm
ZHAO Xiang-mo, CHENG Jing-jun, XU Zhi-gang, et al. An indoor rapid-testing platform for autonomous vehicle based on vehicle-in-the-loop simulation[J]. China Journal of Highway and Transport, 2019, 32(6): 124-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906014.htm
|
[109] |
徐志刚, 李金龙, 赵祥模, 等. 智能公路发展现状与关键技术[J]. 中国公路学报, 2019, 32(8): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201908002.htm
XU Zhi-gang, LI Jin-long, ZHAO Xiang-mo, et al. A review on intelligent road and its related key technologies[J]. China Journal of Highway Transport, 2019, 32(8): 1-24. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201908002.htm
|
[110] |
吴兵, 王文璇, 李林波, 等. 多前车影响的智能网联车辆纵向控制模型[J]. 交通运输工程学报, 2020, 20(2): 184-194. doi: 10.19818/j.cnki.1671-1637.2020.02.015
WU Bing, WANG Wen-xuan, LI Lin-bo, et al. Longitudinal control model for connected autonomous vehicles influenced by multiple preceding vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 184-194. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.02.015
|
[111] |
ELLIOTT D, KEEN W, MIAO Lei. Recent advances in connected and automated vehicles[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(2): 109-131. doi: 10.1016/j.jtte.2018.09.005
|