NEI Jing-xin, LOU Fei, JI Jun-dong, LI Feng. Improvement of fracture failure criterion of body adhesive structure[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 116-124. doi: 10.19818/j.cnki.1671-1637.2020.05.009
Citation: NEI Jing-xin, LOU Fei, JI Jun-dong, LI Feng. Improvement of fracture failure criterion of body adhesive structure[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 116-124. doi: 10.19818/j.cnki.1671-1637.2020.05.009

Improvement of fracture failure criterion of body adhesive structure

doi: 10.19818/j.cnki.1671-1637.2020.05.009
Funds:

National Natural Science Foundation of China 51775230

More Information
  • Author Bio:

    NA Jing-xin(1957-), male, professor, najx@jlu.edu.cn

    LI Feng(1977-), male, associate professor, PhD, fengli@jlu.edu.cn

  • Received Date: 2020-03-07
  • Publish Date: 2020-10-25
  • The existing failure criterion cannot meet the real failure prediction of bonding structures. Thus, a stress-based fracture failure criterion was established by combining an experimental test and simulation analysis. Five groups of ISR-7008/aluminum alloy bonding joints with typical pull-shear ratios were designed. Quasi-static tensile tests were carried out on the five groups of bonding joints with different pull-shear ratios. The initial fracture load and the maximum fracture load were obtained. The initial location of adhesive fracture failure point was determined. A simulation model of the bonding joint was developed. The initial fracture load was applied to the simulation model. The stresses at the initial fracture point in the failure area of the five joints with typical pull-shear ratios were extracted. Through the ratio and linear combination of various stresses at the failure point, an equivalent stress calculation formula was obtained. Based on the equivalent stress calculation formula, a unified failure criterion suitable for the initial failure and subsequent failure was obtained. A verification test plan was designed. The validity of failure criterion was illustrated by comparing the test results and simulation results. Analysis result shows that the fracture load obtained by the simulation analysis in the 75°scarf joint is 1 717.6 N, while the fracture load obtained by the test is 1 936.4 N. The relative error is 11.3%. The simulation results are consistent with the failure process of bonding layer tested in the experiment. The failure criteria established in this study are verified. The unification of initial failure criterion and subsequent failure criterion of the bonded structure is realized in the stress-based failure criterion established in this study. The failure of bonding joints under complex stress conditions can be predicted more accurately. The simulation problem of the thick layer of elastic adhesive is solved by this failure criterion. A certain reference for the strength design of bonding structure in practical engineering applications is provided.

     

  • loading
  • [1]
    欧阳明高. 我国节能与新能源汽车发展战略与对策[J]. 汽车工程, 2006, 28(4): 317-321. doi: 10.3321/j.issn:1000-680X.2006.04.001

    OUYANG Ming-gao. Development strategy and counter measures of domestic energy saving and new energy vehicles[J]. Automotive Engineering, 2006, 28(4): 317-321. (in Chinese). doi: 10.3321/j.issn:1000-680X.2006.04.001
    [2]
    谭伟, 那景新, 范以撒, 等. 考虑温度和载荷影响的动车信息窗粘接结构寿命预测[J]. 交通运输工程学报, 2019, 19(6): 101-110. doi: 10.3969/j.issn.1671-1637.2019.06.011

    TAN Wei, NA Jing-xin, FAN Yi-sa, et al. Adhesive structure life prediction of EMU information window considering influence of temperature and load[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 101-110. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.06.011
    [3]
    武万斌, 年雪山. 汽车轻量化技术发展趋势[J]. 汽车工程师, 2017(1): 15-17. doi: 10.3969/j.issn.1674-6546.2017.01.002

    WU Wan-bin, NIAN Xue-shan. Development of vehicle lightweight technology[J]. Auto Engineer, 2017(1): 15-17. (in Chinese). doi: 10.3969/j.issn.1674-6546.2017.01.002
    [4]
    HE Xiao-cong. A review of finite element analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 248-264. doi: 10.1016/j.ijadhadh.2011.01.006
    [5]
    王欣. 汽车轻量化车身智能工厂精益化设计方案研究[D]. 长春: 吉林大学, 2018.

    WANG Xin. Research on the lean design scheme of light weight car body intelligent manufacture[D]. Changchun: Jilin University, 2018. (in Chinese).
    [6]
    AVENDANO R, CARBAS R J C, MARQUES E A S, et al. Effect of temperature and strain rate on single lap joints with dissimilar lightweight adherends bonded with an acrylic adhesive[J]. Composite Structures, 2016, 152: 34-44. doi: 10.1016/j.compstruct.2016.05.034
    [7]
    CHEN Qiu-ren, GUO Hai-ding, AVERY, et al. Fatigue performance and life estimation of automotive adhesive joints using a fracture mechanics approach[J]. Engineering Fracture Mechanics, 2017, 172: 73-89. doi: 10.1016/j.engfracmech.2017.01.005
    [8]
    张婧, 于今, 熊磊, 等. 车用碳纤维复合材料性能及成型工艺[J]. 科技导报, 2016, 34(8): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201608015.htm

    ZHANG Jing, YU Jin, XIONG Lei, et al. Performance and molding processes of automotive carbon fiber reinforced plastics[J]. Science and Technology Review, 2016, 34(8): 26-30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201608015.htm
    [9]
    张永祥. 环氧树脂胶黏剂胶粘接结构性能的实验和理论研究[D]. 郑州: 郑州大学, 2014.

    ZHANG Yong-xiang. The mechanics performance experiments and theoretical research of the epoxy bonding structure[D]. Zhengzhou: Zhengzhou University, 2014. (in Chinese).
    [10]
    游敏, 郑小玲. 金属胶接接头力学性能测试方法分析[J]. 葛洲坝水电工程学院学报, 1994, 16(2): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC199402016.htm

    YOU Min, ZHENG Xiao-ling. Analysis on the testing methods of mechanical properties in metal to metal adhesive Joints[J]. Journal of Gezhouba Institute of Hydroelectric Engineering, 1994, 16(2): 71-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC199402016.htm
    [11]
    游敏, 杨兴海, 郑勇, 等. 金属胶接接头拉剪破坏过程分析[J]. 化学与粘合, 1997(2): 66-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ702.001.htm

    YOU Min, YANG Xing-hai, ZHENG Yong, et al. Analysis on the destruction procedure of the tensile shear specimen[J]. Chemistry and Adhesion, 1997(2): 66-68. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ702.001.htm
    [12]
    郑小玲, 娜日松, 游敏, 等. 胶瘤对单搭接胶接接头强度的影响[J]. 三峡大学学报(自然科学版), 2001, 23(6): 530-532. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200106012.htm

    ZHENG Xiao-ling, NA Ri-song, YOU Min, et al. Influence of fillet on strength of lap joints[J]. Journal of Three Gorges University (Natural Sciences), 2001, 23(6): 530-532. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200106012.htm
    [13]
    CZARNOCKI P, PIEKARSKI K. Fracture strength of an adhesive-bonded joint[J]. International Journal of Adhesion and Adhesives, 1986, 6(2): 93-96. doi: 10.1016/0143-7496(86)90055-2
    [14]
    YANG C, HUANG H, TOMBLIN J S, et al. Elastic-plastic model of adhesive-bonded single-lap composite joints[J]. Journal of Composite Materials, 2004, 38(4): 293-309. doi: 10.1177/0021998304039268
    [15]
    GUAN Zhi-dong, WU Ai-guo, WANG Jin. Study on ASTM shear-loaded adhesive lap joints[J]. Chinese Journal of Aeronautics, 2004, 17(2): 79-86. doi: 10.1016/S1000-9361(11)60218-5
    [16]
    孙中雷, 张国凡. 复合材料胶接接头强度设计研究[J]. 计算机仿真, 2017(3): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201703011.htm

    SUN Zhong-lei, ZHANG Guo-fan. Research on strength design of composite adhesive joint[J]. Computer Simulation, 2017(3): 52-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201703011.htm
    [17]
    REIS P N B, ANTUNES F J V, FERREIRA J A M. Influence of superposition length on mechanical resistance of single-lap adhesive joints[J]. Composite Structures, 2005, 67: 125-133. doi: 10.1016/j.compstruct.2004.01.018
    [18]
    DUCEPT F, DAVIES P, GAMBY D. Mixed mode failure criteria for a glass/epoxy composite and an adhesively bonded composite/composite joint[J]. International Journal of Adhesion and Adhesives, 2000, 20(3): 233-244. doi: 10.1016/S0143-7496(99)00048-2
    [19]
    QIN Guo-fen, FAN Yi-sa, NA Jing-xin, et al, Durability of aluminium alloy adhesive joints in cyclic hydrothermal condition for high-speed EMU applications[J]. International Journal of Adhesion and Adhesives, 2018, 84: 153-165. doi: 10.1016/j.ijadhadh.2018.03.011
    [20]
    DEHOFF P H, ANUSAVICE K J, WAN Zhi-xin. Three-dimensional finite element analysis of the shear bond test[J]. Dental Materials, 1995, 11(2): 126-130. doi: 10.1016/0109-5641(95)80047-6
    [21]
    KIM W S, LEE J J. Interfacial fracture analysis of adhesive-bonded joints[J]. Advanced Materials Research, 2008, 33-37: 327-332. doi: 10.4028/www.scientific.net/AMR.33-37.327
    [22]
    LEE K Y, KONG B S. Theoretical and experimental studies for the failure criterion of adhesively bonded joints[J]. Journal of Adhesion Science and Technology, 2000, 14(6): 817-832. doi: 10.1163/15685610051066730
    [23]
    KLUG J C, SUN C T. Large deflection effects of cracked aluminum plates repaired with bonded composite patches[J]. Composite Structures, 1998, 42: 291-296. doi: 10.1016/S0263-8223(98)00018-X
    [24]
    NABOULSI S, MALL S. Modeling of a cracked metallic structure with bonded composite patch using the three layer technique[J]. Composite Structures, 1996, 35(3): 295-308. doi: 10.1016/0263-8223(96)00043-8
    [25]
    赵宁, 欧阳海彬, 戴建京, 等. 内聚力模型在结构胶接强度分析中的应用[J]. 现代制造工程, 2009(11): 128-149. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY200911032.htm

    ZHAO Ning, OUYANG Hai-bin, DAI Jian-jing, et al. The application of structure adhesive bonded strength using cohesive zone model[J]. Modern Manufacturing Engineering, 2009(11): 128-149. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY200911032.htm
    [26]
    谭伟, 那景新, 慕文龙, 等. 服役温度对BFRP/铝合金粘接接头静态失效的影响[J]. 交通运输工程学报, 2020, 20(1): 171-180. doi: 10.19818/j.cnki.1671-1637.2020.01.014

    TAN Wei, NA Jing-xin, MU Wen-long, et al. Effect of service temperature on static failure of BFRP/aluminum alloy adhesive joints[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 171-180. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.01.014
    [27]
    聂恒昌, 徐吉峰, 关志东, 等. 复合材料胶接修理层合板拉伸性能及影响参数[J]. 材料工程, 2017, 45(10): 124-131. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201710019.htm

    NIE Heng-chang, XU Ji-feng, GUAN Zhi-dong, et al. Tensile property and influence parameters of bonded repaired composite laminates[J]. Journal of Materials Engineering, 2017, 45(10): 124-131. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201710019.htm
    [28]
    游敏, 郑小玲. 胶接接头剪切和正拉强度试验方法的分析[J]. 粘接, 1994, 15(3): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-NIAN403.007.htm

    YOU Min, ZHENG Xiao-ling. Analyses on the shear and tensile strength testing methods of adhesive joints[J]. Adhesion, 1994, 15(3): 29-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NIAN403.007.htm
    [29]
    KIM W S, LEE J J. Interfacial fracture analysis of adhesive-bonded joints[J]. Advanced Materials Research, 2008, 33-37: 327-332.
    [30]
    范以撒. 温度湿度对车用聚氨酯粘接剂静态强度的影响研究[D]. 长春: 吉林大学, 2018.

    FAN Yi-sa. Research on the effect of temperature and humidity on static strength of automotive polyurethane adhesive[D]. Changchun: Jilin University, 2018. (in Chinese).
    [31]
    GROTH H L. A method to predict fracture in an adhesively bonded joint[J]. International Journal of Adhesion and Adhesives, 1985, 5(1): 19-22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (680) PDF downloads(311) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return