TAO Wei-jie, CAI Bo-gen, LIU Jiang, WANG Jian, SHANGGUAN Wei. UKF-based three-dimensional track generation method for digital track map[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 227-236. doi: 10.19818/j.cnki.1671-1637.2020.05.019
Citation: TAO Wei-jie, CAI Bo-gen, LIU Jiang, WANG Jian, SHANGGUAN Wei. UKF-based three-dimensional track generation method for digital track map[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 227-236. doi: 10.19818/j.cnki.1671-1637.2020.05.019

UKF-based three-dimensional track generation method for digital track map

doi: 10.19818/j.cnki.1671-1637.2020.05.019
Funds:

National Key Research and Development Program of China 2016YFB1201500

National Natural Science Foundation of China 61873023

Fundamental Research Funds for the Central Universities 2018YJS016

Beijing Natural Science Foundation 4182053

More Information
  • To meet the requirements of digital track maps for the satellite-navigation-system-based train positioning, an unscented Kalman filter(UKF)-based track estimation method was proposed and a three-dimensional digital track map for railway tracks was generated. For the three basic curve elements(straight line, transition curve, and circular arc) in the horizontal profile of railway track, a mileage-parameterized Fresnel integral model was used for a unified modeling. For the straight line and curve in the vertical profile, a quadratic curve model was used for modeling. The states(mileage, three-dimensional coordinates) and parameters(heading, curvature, curvature rate, slope, and slope rate) of models were jointly estimated using the UKF. The normalized innovation squared and estimated distance error were introduced as the criteria to segment the track. The three-dimensional railway track was generated using the breakpoints along with the geometric parameters. The discrete point, cubic polynomial, and proposed Fresnel integral methods were compared by using the simulated horizontal track data. The Fresnel method was verified by using the 14.7 km field data from the Qinghai-Tibet Railway Line. Simulation result shows that the mean horizontal distance errors are below 0.024 m for all three methods under the same error requirement. However, the Fresnel method uses the fewest break points, with a data reduction rate of 99.76%. In addition, the maximum chainage error of Fresnel method is the smallest, which decreases from 0.964 m to only 0.060 m, with a reduction of 93.77%. The heading and curvature of Fresnel method are considerably more accurate than those of the cubic polynomial method, which are closer to the true value. The field data test results demonstrate that the Fresnel method can use 22 and 20 break points with their parameters to generate the horizontal and vertical curves, respectively. The mean distance errors of horizontal and vertical curves are below 0.03 m, while the maximum accumulative mileage error is only 0.078 m, which indicates high accuracies of both position and geometry.

     

  • loading
  • [1]
    OTEGUI J, BAHILLO A, LOPETEGI I, et al. A survey of train positioning solutions[J]. IEEE Sensors Journal, 2017, 17(20): 6788-6797. doi: 10.1109/JSEN.2017.2747137
    [2]
    刘江, 蔡伯根, 王剑. 基于卫星导航系统的列车定位技术现状与发展[J]. 中南大学学报(自然科学版), 2014, 45(11): 4033-4042. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411044.htm

    LIU Jiang, CAI Bai-gen, WANG Jian. Status and development of satellite navigation system based train positioning technology[J]. Journal of Central South University (Science and Technology), 2014, 45(11): 4033-4042. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411044.htm
    [3]
    上官伟, 袁重阳, 蔡伯根, 等. 北斗二代在西部低密度铁路中的应用[J]. 交通运输工程学报, 2016, 16(5): 132-141. doi: 10.3969/j.issn.1671-1637.2016.05.015

    SHANGGUAN Wei, YUAN Chong-yang, CAI Bai-gen, et al. Application of BDS in western low-density railway lines[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 132-141. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.05.015
    [4]
    郭子明, 蔡伯根, 姜维, 等. 基于贝叶斯建模的轨道占用识别方法[J]. 交通运输系统工程与信息, 2020, 20(1): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001009.htm

    GUO Zi-ming, CAI Bai-gen, JIANG Wei, et al. A track occupancy identification approach based on Bayesian modeling[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 47-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001009.htm
    [5]
    JIANG Qing-an, WU Wen-qi, JIANG Ming-ming, et al. A new filtering and smoothing algorithm for railway track surveying based on landmark and IMU/Odometer[J]. Sensors, 2017, 17(6): 1-20. doi: 10.1109/JSEN.2017.2656005
    [6]
    李清泉, 毛庆洲. 道路/轨道动态精密测量进展[J]. 测绘学报, 2017, 46(10): 1734-1741. doi: 10.11947/j.AGCS.2017.20170323

    LI Qing-quan, MAO Qing-zhou. Progress on dynamic and precise engineering surveying for pavement and track[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1734-1741. (in Chinese). doi: 10.11947/j.AGCS.2017.20170323
    [7]
    李广云, 范百兴. 精密工程测量技术及其发展[J]. 测绘学报, 2017, 46(10): 1742-1751. doi: 10.11947/j.AGCS.2017.20170313

    LI Guang-yun, FAN Bai-xing. The development of precise engineering surveying technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1742-1751. (in Chinese). doi: 10.11947/j.AGCS.2017.20170313
    [8]
    吴小宁, 蒲文奎. 青藏铁路ITCS系统专用地图数据测绘优化方案[J]. 铁道通信信号, 2019, 55(2): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-TDTH201902018.htm

    WU Xiao-ning, PU Wen-kui. Optimized track surveying scheme of digital map for ITCS system in Qinghai-Tibet Railway[J]. Railway Signalling and Communication, 2019, 55(2): 63-66. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDTH201902018.htm
    [9]
    LIU Jiang, CAI Bai-gen, WANG Jian. Electronic track map building for satellite-based high integrity railway train positioning[J]. International Journal on Smart Sensing and Intelligent Systems, 2013, 6(2): 610-629. doi: 10.21307/ijssis-2017-557
    [10]
    曾强, 陈德旺, 王丽娟, 等. 基于主曲线和自适应半径的多GPS轨迹数据融合算法[J]. 铁道学报, 2015, 37(2): 46-51. doi: 10.3969/j.issn.1001-8360.2015.02.007

    ZENG Qiang, CHEN De-wang, Wang Li-juan, et al. Multiple GPS data fusion algorithm based on principal curves and adaptive radius method[J]. Journal of the China Railway Society, 2015, 37(2): 46-51. (in Chinese). doi: 10.3969/j.issn.1001-8360.2015.02.007
    [11]
    HEIRICH O, ROBERTSON P, STRANG T. RailSLAM—localization of rail vehicles and mapping of geometric railway tracks[C]//IEEE. Proceedings of IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE, 2013: 5212-5219.
    [12]
    HEIRICH O. Bayesian train localization with particle filter, loosely coupled GNSS, IMU, and a track map[J]. Journal of Sensors, 2016, DOI: 10.1155/2016/2672640.
    [13]
    陶璐, 朱敦尧, 王军德, 等. 一种基于里程参数的道路平面几何解析模型[J]. 测绘通报, 2017(3): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201703013.htm

    TAO Lu, ZHU Dun-yao, WANG Jun-de, et al. A road plane geometry analytical model based on mileage parameter[J]. Bulletin of Surveying and Mapping, 2017(3): 52-57. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201703013.htm
    [14]
    JO K, SUNWOO M. Generation of aprecise roadway map for autonomous cars[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (3): 925-937. doi: 10.1109/TITS.2013.2291395
    [15]
    JO K, LEE M, KIM J, et al. Tracking and behavior reasoning of moving vehicles based on roadway geometry constraints[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(2): 460-476.
    [16]
    GWON G P, HUR W S, KIM S W, et al. Generation of a precise and efficient lane-level road map for intelligent vehicle systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 4517-4533. doi: 10.1109/TVT.2016.2535210
    [17]
    GARACH L, DE OÑA J, PASADAS M. Mathematical formulation and preliminary testing of a spline approximation algorithm for the extraction of road alignments[J]. Automation in Construction, 2014, 47: 1-9. doi: 10.1016/j.autcon.2014.07.002
    [18]
    CAMACHO-TORREGROSA F J, PÉREZ-ZURIAGA A M, CAMPOY-UNGRÍA J M, et al. Use of heading direction for recreating the horizontal alignment of an existing road[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(4): 282-299. doi: 10.1111/mice.12094
    [19]
    HOLGADO-BARCO A, GONZÁLEZ-AGUILERA D, ARIAS-SANCHEZ P, et al. Semiautomatic extraction of road horizontal alignment from a mobile LiDAR system[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 30(3): 217-228.
    [20]
    GIKAS V, STRATAKOS J. A novel geodetic engineering method for accurate and automated road/railway centerline geometry extraction based on the bearing diagram and fractal behavior[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 115-126. doi: 10.1109/TITS.2011.2163186
    [21]
    BETAILLE D, TOLEDO-MOREO R. Creating enhanced maps for lane-level vehicle navigation[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 786-798. doi: 10.1109/TITS.2010.2050689
    [22]
    郝雨时, 徐爱功, 章红平, 等. 车载POS公路线形特征识别与参数计算[J]. 武汉大学学报·信息科学版, 2018, 43(8): 1249-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201808018.htm

    HAO Yu-shi, XU Ai-gong, ZHANG Hong-ping, et al. Road recognition and calculation of relevant parameters with POS[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1249-1255. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201808018.htm
    [23]
    LI Wei, PU Hao, SCHONFELD P, et al. A method for automatically recreating the horizontal alignment geometry of existing railways[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(1): 71-94. doi: 10.1111/mice.12392
    [24]
    李伟, 周雨, 王杰, 等. 基于点线一致的既有铁路线路纵断面自动重构方法[J]. 铁道科学与工程学报, 2019, 16(11): 2684-2691. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201911006.htm

    LI Wei, ZHOU Yu, WANG Jie, et al. Automatic recreating vertical alignment of existing railway based on points-alignment consistency[J]. Journal of Railway Science and Engineering, 2019, 16(11): 2684-2691. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201911006.htm
    [25]
    WINTER H, WILLERT V, ADAMY J. Increasing accuracy in train localization exploiting track-geometry constraints[C]//IEEE. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2018: 1572-1579.
    [26]
    WINTER H, LUTHARDT S, WILLERT V, et al. Generating compact geometric track-maps for train positioning applications[C]∥IEEE. 2019 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2019: 1027-1032.
    [27]
    DEFRUTOS S H, CASTRO M. A method to identify and classify the vertical alignment of existing roads[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32: 952-963. doi: 10.1111/mice.12302
    [28]
    薛新功, 李伟, 蒲浩. 铁路线路智能优化方法研究综述[J]. 铁道学报, 2018, 40(3): 6-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201803003.htm

    XUE Xin-gong, LI Wei, PU Hao. Review on intelligent optimization methods for railway alignment[J]. Journal of the China Railway Society, 2018, 40(3): 6-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201803003.htm
    [29]
    JULIER S J, UHLMANN J K, DURRANT-WHYTE H F. A new approach for filtering nonlinear systems[C]//IEEE. Proceedings of 1995 American Control Conference. New York: IEEE, 1995: 1628-1632.
    [30]
    JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
    [31]
    孙作雷, 李影, 张波, 等. 基于一致性校验的贝叶斯估计器性能评估[J]. 系统仿真学报, 2016, 28(3): 569-576. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201603009.htm

    SUN Zuo-lei, LI Ying, ZHANG Bo, et al. Performance evaluation of Bayesian estimator with consistency validation[J]. Journal of System Simulation, 2016, 28(3): 569-576. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201603009.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (476) PDF downloads(246) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return