Citation: | TAO Wei-jie, CAI Bo-gen, LIU Jiang, WANG Jian, SHANGGUAN Wei. UKF-based three-dimensional track generation method for digital track map[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 227-236. doi: 10.19818/j.cnki.1671-1637.2020.05.019 |
[1] |
OTEGUI J, BAHILLO A, LOPETEGI I, et al. A survey of train positioning solutions[J]. IEEE Sensors Journal, 2017, 17(20): 6788-6797. doi: 10.1109/JSEN.2017.2747137
|
[2] |
LIU Jiang, CAI Bai-gen, WANG Jian. Status and development of satellite navigation system based train positioning technology[J]. Journal of Central South University (Science and Technology), 2014, 45(11): 4033-4042. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411044.htm
|
[3] |
SHANGGUAN Wei, YUAN Chong-yang, CAI Bai-gen, et al. Application of BDS in western low-density railway lines[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 132-141. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.05.015
|
[4] |
GUO Zi-ming, CAI Bai-gen, JIANG Wei, et al. A track occupancy identification approach based on Bayesian modeling[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 47-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001009.htm
|
[5] |
JIANG Qing-an, WU Wen-qi, JIANG Ming-ming, et al. A new filtering and smoothing algorithm for railway track surveying based on landmark and IMU/Odometer[J]. Sensors, 2017, 17(6): 1-20. doi: 10.1109/JSEN.2017.2656005
|
[6] |
LI Qing-quan, MAO Qing-zhou. Progress on dynamic and precise engineering surveying for pavement and track[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1734-1741. (in Chinese). doi: 10.11947/j.AGCS.2017.20170323
|
[7] |
LI Guang-yun, FAN Bai-xing. The development of precise engineering surveying technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1742-1751. (in Chinese). doi: 10.11947/j.AGCS.2017.20170313
|
[8] |
WU Xiao-ning, PU Wen-kui. Optimized track surveying scheme of digital map for ITCS system in Qinghai-Tibet Railway[J]. Railway Signalling and Communication, 2019, 55(2): 63-66. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDTH201902018.htm
|
[9] |
LIU Jiang, CAI Bai-gen, WANG Jian. Electronic track map building for satellite-based high integrity railway train positioning[J]. International Journal on Smart Sensing and Intelligent Systems, 2013, 6(2): 610-629. doi: 10.21307/ijssis-2017-557
|
[10] |
ZENG Qiang, CHEN De-wang, Wang Li-juan, et al. Multiple GPS data fusion algorithm based on principal curves and adaptive radius method[J]. Journal of the China Railway Society, 2015, 37(2): 46-51. (in Chinese). doi: 10.3969/j.issn.1001-8360.2015.02.007
|
[11] |
HEIRICH O, ROBERTSON P, STRANG T. RailSLAM—localization of rail vehicles and mapping of geometric railway tracks[C]//IEEE. Proceedings of IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE, 2013: 5212-5219.
|
[12] |
HEIRICH O. Bayesian train localization with particle filter, loosely coupled GNSS, IMU, and a track map[J]. Journal of Sensors, 2016, DOI: 10.1155/2016/2672640.
|
[13] |
TAO Lu, ZHU Dun-yao, WANG Jun-de, et al. A road plane geometry analytical model based on mileage parameter[J]. Bulletin of Surveying and Mapping, 2017(3): 52-57. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201703013.htm
|
[14] |
JO K, SUNWOO M. Generation of aprecise roadway map for autonomous cars[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (3): 925-937. doi: 10.1109/TITS.2013.2291395
|
[15] |
JO K, LEE M, KIM J, et al. Tracking and behavior reasoning of moving vehicles based on roadway geometry constraints[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(2): 460-476.
|
[16] |
GWON G P, HUR W S, KIM S W, et al. Generation of a precise and efficient lane-level road map for intelligent vehicle systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 4517-4533. doi: 10.1109/TVT.2016.2535210
|
[17] |
GARACH L, DE OÑA J, PASADAS M. Mathematical formulation and preliminary testing of a spline approximation algorithm for the extraction of road alignments[J]. Automation in Construction, 2014, 47: 1-9. doi: 10.1016/j.autcon.2014.07.002
|
[18] |
CAMACHO-TORREGROSA F J, PÉREZ-ZURIAGA A M, CAMPOY-UNGRÍA J M, et al. Use of heading direction for recreating the horizontal alignment of an existing road[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(4): 282-299. doi: 10.1111/mice.12094
|
[19] |
HOLGADO-BARCO A, GONZÁLEZ-AGUILERA D, ARIAS-SANCHEZ P, et al. Semiautomatic extraction of road horizontal alignment from a mobile LiDAR system[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 30(3): 217-228.
|
[20] |
GIKAS V, STRATAKOS J. A novel geodetic engineering method for accurate and automated road/railway centerline geometry extraction based on the bearing diagram and fractal behavior[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 115-126. doi: 10.1109/TITS.2011.2163186
|
[21] |
BETAILLE D, TOLEDO-MOREO R. Creating enhanced maps for lane-level vehicle navigation[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 786-798. doi: 10.1109/TITS.2010.2050689
|
[22] |
HAO Yu-shi, XU Ai-gong, ZHANG Hong-ping, et al. Road recognition and calculation of relevant parameters with POS[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1249-1255. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201808018.htm
|
[23] |
LI Wei, PU Hao, SCHONFELD P, et al. A method for automatically recreating the horizontal alignment geometry of existing railways[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(1): 71-94. doi: 10.1111/mice.12392
|
[24] |
LI Wei, ZHOU Yu, WANG Jie, et al. Automatic recreating vertical alignment of existing railway based on points-alignment consistency[J]. Journal of Railway Science and Engineering, 2019, 16(11): 2684-2691. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201911006.htm
|
[25] |
WINTER H, WILLERT V, ADAMY J. Increasing accuracy in train localization exploiting track-geometry constraints[C]//IEEE. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2018: 1572-1579.
|
[26] |
WINTER H, LUTHARDT S, WILLERT V, et al. Generating compact geometric track-maps for train positioning applications[C]∥IEEE. 2019 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2019: 1027-1032.
|
[27] |
DEFRUTOS S H, CASTRO M. A method to identify and classify the vertical alignment of existing roads[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32: 952-963. doi: 10.1111/mice.12302
|
[28] |
XUE Xin-gong, LI Wei, PU Hao. Review on intelligent optimization methods for railway alignment[J]. Journal of the China Railway Society, 2018, 40(3): 6-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201803003.htm
|
[29] |
JULIER S J, UHLMANN J K, DURRANT-WHYTE H F. A new approach for filtering nonlinear systems[C]//IEEE. Proceedings of 1995 American Control Conference. New York: IEEE, 1995: 1628-1632.
|
[30] |
JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
|
[31] |
SUN Zuo-lei, LI Ying, ZHANG Bo, et al. Performance evaluation of Bayesian estimator with consistency validation[J]. Journal of System Simulation, 2016, 28(3): 569-576. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201603009.htm
|