Citation: | TAN Yi-qiu, LI Guan-nan, DAN Li-yan, LYU Hui-jie, MENG An-xin. Research progress of bitumen microstructures and components[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 1-17. doi: 10.19818/j.cnki.1671-1637.2020.06.001 |
[1] |
MORTAZAVI M, MOULTHROP J S. The SHRP materials reference library[R]. Washington DC: National Research Council, 1993.
|
[2] |
WIEHE I A, LIANG K S. Asphaltenes, resins, and other petroleum macromolecules[J]. Fluid Phase Equilibria, 1996, 117(1/2): 201-210.
|
[3] |
LOEBER L, MULLER G, MOREL J, et al. Bitumen in colloid science: a chemical, structural and rheological approach[J]. Fuel, 1998, 77(13): 1443-1450. doi: 10.1016/S0016-2361(98)00054-4
|
[4] |
CORBETT L W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization[J]. Analytical Chemistry, 1969, 41(4): 576-580. doi: 10.1021/ac60273a004
|
[5] |
HINKLE A, SHIN E J, LIBERATORE M W, et al. Correlating the chemical and physical properties of a set of heavy oils from around the world[J]. Fuel, 2008, 87(13/14): 3065-3070.
|
[6] |
HAO Jun-hui, CHE Yuan-jun, TIAN Yuan-yu, et al. Thermal cracking characteristics and kinetics of oil sand bitumen and its SARA fractions by TG-FTIR[J]. Energy and Fuels, 2017, 31: 1295-1309. doi: 10.1021/acs.energyfuels.6b02598
|
[7] |
SPEIGHT J G, MOSCHOPEDIS S E. On the molecular nature of petroleum asphaltenes[J]. Advances in Chemistry, 1982, 195: 1-15.
|
[8] |
BRANTHAVER J F, PETERSEN J C, ROBERTSON R E, et al. Binder characterization and evaluation—volume 2: chemistry[R]. Washington DC: National Research Council, 1993.
|
[9] |
梁文杰, 阙国和, 陈月珠. 我国原油减压渣油的化学组成与结构Ⅱ: 减压渣油及其各组分的平均结构[J]. 石油学报(石油加工), 1991, 7(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG199104000.htm
LIANG Wen-jie, QUE Guo-he, CHEN Yue-zhu. Chemical composition and structure of vacuum residues of Chinese crudesⅡ: average structure of vacuum residues and their fractions[J]. ACTA Petrolei Sinica (Petroleum Processing Section), 1991, 7(4): 1-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG199104000.htm
|
[10] |
KOOTS J A, SPEIGHT J G. Relation of petroleum resins to asphaltenes[J]. Fuel, 1975, 54: 179-184. doi: 10.1016/0016-2361(75)90007-1
|
[11] |
SPEIGHT J G. Petroleum asphaltenes—part 1: asphaltenes, resins and the structure of petroleum[J]. Oil and Gas Science and Technology, 2004, 59(5): 467-477. doi: 10.2516/ogst:2004032
|
[12] |
MICHON L, MARTIN D, PLANCHE J P. Estimation of average structural parameters of bitumens by 13C nuclear magnetic resonance spectroscopy[J]. Fuel, 1997, 76(1): 9-15. doi: 10.1016/S0016-2361(96)00184-6
|
[13] |
MASSON J F, POLOMARK G M. Bitumen microstructure by modulated differential scanning calorimetry[J]. Thermochimica Acta, 2001, 374(2): 105-114. doi: 10.1016/S0040-6031(01)00478-6
|
[14] |
MASSON J F, POLOMARK G M, COLLINS P. Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry[J]. Energy and Fuels, 2002, 16: 470-476. doi: 10.1021/ef010233r
|
[15] |
MASSON J F, LEBLOND V, MARGESON J. Bitumen morphologies by phase—detection atomic force microscopy[J]. Journal of Microscopy, 2006, 221: 17-29. doi: 10.1111/j.1365-2818.2006.01540.x
|
[16] |
CLAUDY P, LETOFFE J M, KING G N, et al. Characterization of paving asphalts by differential scanning calorimetry[J]. Fuel Science and Technology International, 1991, 9(1): 71-92. doi: 10.1080/08843759108942254
|
[17] |
LESUEUR D. The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification[J]. Advances in Colloid and Interface Science, 2009, 145(1/2): 42-82.
|
[18] |
REHAN M, NIZAMI A S, TAYLAN O, et al. Determination of wax content in crude oil[J] Petroleum Science and Technology, 2016, 34(9): 799-804.
|
[19] |
LU Xiao-hu, KALMAN B, REDELIUS P. A new test method for determination of wax content in crude oils, residues and bitumens[J]. Fuel, 2008, 87(8/9): 1543-1551.
|
[20] |
THANHN X, HSIEH M, PHILP R P. Waxes and asphaltenes in crude oils[J]. Organic Geochemistry, 1999, 30: 119-132. doi: 10.1016/S0146-6380(98)00208-3
|
[21] |
刘洪安. 道路沥青降蜡改性与老化机理研究[D]. 青岛: 中国石油大学, 2012.
LIU Hong-an. Study on wax-reducing modification and ageing of paving asphalt[D]. Qingdao: China University of Petroleum, 2012. (in Chinese).
|
[22] |
厉涛. 梳型共聚物与蜡、沥青质/胶质的组装行为对原油的流变性能的影响研究[D]. 上海: 华东理工大学, 2018.
LI Tao. Assembly behaviours between comb-type copolymers and wax or asphaltene/resin toward the rheological effect on crude oils[D]. Shanghai: East China University of Science and Technology, 2018. (in Chinese).
|
[23] |
EDWARDS Y, REDELIUS P. Rheological effects of waxes in bitumen[J]. Energy and Fuels, 2003, 17(3): 511-520. doi: 10.1021/ef020202b
|
[24] |
EDWARDS Y, ISACSSON U. Wax in bitumen. Part 1—classifications and general aspects[J]. Road Material and Pavement Design, 2005, 6(3): 281-309.
|
[25] |
EDWARDS Y, ISACSSON U. Wax in bitumen. Part 2—characterization and effects[J]. Road Material and Pavement Design, 2005, 6(4): 439-468.
|
[26] |
王瑞馨. 复合相变材料对沥青混凝土控温及路用性能研究[D]. 大连: 大连交通大学, 2018.
WANG Rui-xin. Study on temperature control and pavement performance of composite phase change material for asphalt concrete[D]. Dalian: Dalian Jiaotong University, 2018. (in Chinese).
|
[27] |
何亮. 温拌橡胶沥青及混合料路用性能研究[D]. 南京: 东南大学, 2013.
HE Liang. Research on road performance of warm mix asphalt rubber and its mixture[D]. Nanjing: Southeast University, 2013. (in Chinese).
|
[28] |
ZHAO Xu, XU Chun-ming, QUAN Shi. Porphyrins in heavy petroleums: a review[J]. Structure and Modeling of Complex Petroleum Mixtures, 2015, 189: 1-32.
|
[29] |
TURGMAN-COHEN S, SMITH M B, FISCHER D A, et al. Asphaltene adsorption onto self-assembled monolayers of mixed aromatic and aliphatic trichlorosilanes[J]. Langmuir, 2009, 25(11): 6260-6269. doi: 10.1021/la9000895
|
[30] |
JOUAULT N, CORVIS Y, COUSIN F, et al. Asphaltene adsorption mechanisms on the local scale probed by neutron reflectivity: transition from monolayer to multilayer growth above the flocculation threshold[J]. Langmuir, 2009, 25(7): 3991-3998. doi: 10.1021/la8027447
|
[31] |
GONZALEZ M F, STULL C S, LOPEZ-LINARES F, et al. Comparing asphaltene adsorption with model heavy molecules over macroporous solid surfaces[J]. Energy and Fuels, 2007, 21(1): 234-241. doi: 10.1021/ef060196+
|
[32] |
AGGARWAL V, CHIEN Y Y, TEPPEN B J. Molecular simulations to estimate thermodynamics for adsorption of polar organic solutes to montmorillonite[J]. European Journal of Soil Science, 2007, 58: 945-957. doi: 10.1111/j.1365-2389.2007.00939.x
|
[33] |
SKARTLIEN R, SIMON S, SJÖBLOM J. DPD molecular simulations of asphaltene adsorption on hydrophilic substrates: effects of polar groups and solubility[J]. Journal of Dispersion Science and Technology, 2016, 37(6): 866-883. doi: 10.1080/01932691.2015.1066259
|
[34] |
WU Guo-Zhong, HE Lin, CHEN Dao-yi. Sorption and distribution of asphaltene, resin, aromatic and saturate fractions of heavy crude oil on quartz surface: molecular dynamic simulation[J]. Chemosphere, 2013, 92(11): 1465-1471. doi: 10.1016/j.chemosphere.2013.03.057
|
[35] |
XIONG Yong, LI Zhen, CAI Tian-tian, et al. Synergistic adsorption of polyaromatic compounds on silica surfaces studied by molecular dynamics simulation[J]. Journal of Physical Chemistry, 2018, 122: 4290-4299.
|
[36] |
LI Xin-gang, BAI Yun, SUI Hong, et al. Understanding the liberation of asphaltenes on muscovite surface[J]. Energy and Fuels, 2017, 31(2): 1174-1181. doi: 10.1021/acs.energyfuels.6b02278
|
[37] |
LI Xin-gang, BAI Yun, SUI Hong, et al. Understanding desorption of oil fractions from mineral surfaces[J]. Fuel, 2018, 232: 257-266. doi: 10.1016/j.fuel.2018.05.112
|
[38] |
BAI Yun, SUI Hong, LIU Xiao-yan, et al. Effects of the N, O, and S heteroatoms on the adsorption and desorption of asphaltenes on silica surface: a molecular dynamics simulation[J]. Fuel, 2019, 240: 252-261. doi: 10.1016/j.fuel.2018.11.135
|
[39] |
SODERO A C R, SANTOS-SILVA H, LEVEL P G, et al. Investigation of the effect of sulfur heteroatom on asphaltene aggregation[J]. Energy and Fuels, 2016, 30(6): 4758-4766. doi: 10.1021/acs.energyfuels.6b00757
|
[40] |
SANTOS-SILVA H, SODERO A C R, BOUYSSIERE B, et al. Molecular dynamics study of nanoaggregation in asphaltene mixtures: effects of the N, O, and S heteroatoms[J]. Energy and Fuels, 2016, 30: 5656-5664. doi: 10.1021/acs.energyfuels.6b01170
|
[41] |
XIONG Yong, CAO Tian-tian, CHEN Qian, et al. Adsorption of a polyaromatic compound on silica surfaces from organic solvents studied by molecular dynamics simulation and AFM imaging[J]. Journal of Physical Chemistry, 2017, 121: 5020-5028.
|
[42] |
MACK C. Colloidal chemistry of asphalts[J]. Journal of Physical Chemistry, 1932, 36(12): 2901-2914. doi: 10.1021/j150342a005
|
[43] |
PFEIFFER J P, SAAL R N J. Asphaltic bitumen as colloidal system[J]. Journal of Physical Chemistry, 1940, 44(2): 139-149. doi: 10.1021/j150398a001
|
[44] |
BEHNOOD A, GHAREHVERAN M M. Morphology, rheology and physical properties of polymer-modified asphalt binders[J]. European Polymer Journal, 2019, 112: 766-791. doi: 10.1016/j.eurpolymj.2018.10.049
|
[45] |
SAAL R N J, LABOUT J W A. Rheological properties of asphaltic bitumens[J]. Journal of Physical Chemistry, 1940, 40(2): 149-165.
|
[46] |
DWIGGINS C W. A small angle X-ray scattering study of the colloidal nature of petroleum[J]. Journal of Physical Chemistry, 1965, 69(10): 3500-3506. doi: 10.1021/j100894a041
|
[47] |
RAVEY J C, DUCOURET G, ESPINAT D. Asphaltene macrostructure by small angle neutron scattering[J]. Fuel, 1988, 67: 1560-1567. doi: 10.1016/0016-2361(88)90076-2
|
[48] |
OVERFIELD R E, SHEU E Y, SINHA S K, et al. Sans study of asphaltene aggregation[J]. Fuel Science and Technology International, 1989, 7(5/6): 611-624.
|
[49] |
BARDON C, BARRE L, ESPINAT D, et al. The colloidal structure of crude oils and suspensions of asphaltenes and resins[J]. Fuel Science and Technology International, 1996, 14(1/2): 203-242.
|
[50] |
TANAKA R, SATO E, HUNT J E, et al. Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering[J]. Energy and Fuels, 2004, 18(4): 1118-1125. doi: 10.1021/ef034082z
|
[51] |
MASON T G, LIN M Y. Asphaltene nanoparticle aggregation in mixtures of incompatible crude oils[J]. Physical Review E, 2003, 67: 050401-1-4.
|
[52] |
YEN F T. The colloidal aspect of a macrostructure of petroleum asphalt[J]. Fuel Science and Technology International, 1992, 10(4-6): 723-733. doi: 10.1080/08843759208916018
|
[53] |
SHAN Li-yan, XIE Ru, WAGNER N J, et al. Microstructure of neat and SBS modified asphalt binder by small-angle neutron scattering[J]. Fuel, 2019, 253: 1589-1596. doi: 10.1016/j.fuel.2019.05.087
|
[54] |
MOHD HASAN M R, CHEW J W, JAMSHIDI A, et al. Review of sustainability, pretreatment, and engineering considerations of asphalt modifiers from the industrial solid wastes[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(3): 209-244. doi: 10.1016/j.jtte.2018.08.001
|
[55] |
LESUEUR D, GÉRARD J F, CLAUDY P. A structure-related model to describe asphalt linear viscoelasticity[J]. Journal of Rheology, 1996, 40(5): 813-836. doi: 10.1122/1.550764
|
[56] |
DICKIE J P, YEN T F. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39(14): 1847-1852. doi: 10.1021/ac50157a057
|
[57] |
MULLINS O C. The modified Yen model[J]. Energy and Fuels, 2010, 24(4): 2179-2207. doi: 10.1021/ef900975e
|
[58] |
BARRÉ L, JESTIN J, MORISSET A, et al. Relation between nanoscale structure of asphaltene aggregates and their macroscopic solution properties[J]. Oil and Gas Science and Technology, 2009, 64(5): 617-628. doi: 10.2516/ogst/2009022
|
[59] |
LI D D, GREENFIELD M L. High internal energies of proposed asphaltene structures[J]. Energy and Fuels, 2011, 25(8): 3698-3705. doi: 10.1021/ef200507c
|
[60] |
LI D D, GREENFIELD M L. Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules[J]. Journal of Chemical Physics, 2014, 140: 034507-1-10.
|
[61] |
ZHANG Li-qun, GREENFIELD M L. Molecular orientation in model asphalts using molecular simulation[J]. Energy and Fuels, 2007, 21(2): 1102-1111. doi: 10.1021/ef060449z
|
[62] |
ZHANG Li-qun, GREENFIELD M L. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation[J]. Journal of Chemical Physics, 2007, 127(19): 194502-1-13.
|
[63] |
ZHANG Li-qun, GREENFIELD M L. Analyzing properties of model asphalts using molecular simulation[J]. Energy and Fuels, 2007, 21(3): 1712-1716. doi: 10.1021/ef060658j
|
[64] |
ZHANG Li-qun, GREENFIELD M L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy and Fuels, 2008, 22(5): 3363-3375. doi: 10.1021/ef700699p
|
[65] |
ZHANG Li-qun, GREENFIELD M L. Rotational relaxation times of individual compounds within simulations of molecular asphalt models[J]. Journal of Chemical Physics, 2010, 132: 184502-1-10.
|
[66] |
LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115(1): 347-356.
|
[67] |
BHASIN A, BOMMAVARAM R, GREENFIELD M L, et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2011, 23(4): 485-492. doi: 10.1061/(ASCE)MT.1943-5533.0000200
|
[68] |
许勐. 基于分子动力学模拟的沥青再生剂扩散机理分析[D]. 哈尔滨: 哈尔滨工业大学, 2015.
XU Meng. Analysis of the diffusion of rejuvenator into asphalt based on the molecular dynamic simulation[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese).
|
[69] |
XU Guang-ji, WANG Hao. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112: 161-169. doi: 10.1016/j.commatsci.2015.10.024
|
[70] |
XU G, WANG H. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate[J]. Construction and Building Materials, 2016, 121: 246-254. doi: 10.1016/j.conbuildmat.2016.05.167
|
[71] |
HE Liang, LI Guan-nan, LYU Song-tao, et al. Self-healing behavior of asphalt system based on molecular dynamics simulation[J]. Construction and Building Materials, 2020, 254: 119-225.
|
[72] |
DING Yong-Jie, TANG Bo-ming, ZHANG Yu-zhen, et al. Molecular dynamics simulation to investigate the influence of SBS on molecular agglomeration behavior of asphalt[J]. Journal of Materials in Civil Engineering, 2015, 27(8): C4014004-1-7.
|
[73] |
XU Guang-ji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. doi: 10.1016/j.fuel.2016.10.021
|
[74] |
WANG Peng, DONG Ze-jiao, TAN Yi-qiu, et al. Effect of multi-walled carbon nanotubes on the performance of styrene-butadiene-styrene copolymer modified asphalt[J]. Materials and Structures, 2017, 50(1): 1-11. doi: 10.1617/s11527-016-0885-6
|
[75] |
WANG Peng, ZHAI Fei, DONG Ze-jiao, et al. Micromorphology of asphalt modified by polymer and carbon nanotubes through molecular dynamics simulation and experiments: role of strengthened interfacial interactions[J]. Energy and Fuels, 2018, 32(2): 1179-1187. doi: 10.1021/acs.energyfuels.7b02909
|
[76] |
ZHOU Xin-xing, ZHAO Guang-yuan, TIGHE S, et al. Quantitative comparison of surface and interface adhesive properties of fine aggregate asphalt mixtures composed of basalt, steel slag, and andesite[J]. Construction and Building Materials, 2020, 246: 118507-1-12.
|
[77] |
SUN Wei, WANG Hao. Moisture effect on nanostructure and adhesion energy of asphalt on aggregate surface: a molecular dynamics study[J]. Applied Surface Science, 2020, 510: 145435-1-11.
|
[78] |
颜子敏. 结合相场法的热-力-扩散耦合理论研究[D]. 重庆: 重庆大学, 2018.
YAN Zi-min. Research of thermal-elastic-diffusion theory combine with phase field method[D]. Chonqing: Chongqing University, 2018. (in Chinese).
|
[79] |
KIM J. Phase-field models for multi-component fluid flows[J]. Communications in Computational Physics, 2012, 12(3): 613-661. doi: 10.4208/cicp.301110.040811a
|
[80] |
KRINGOS N, SCHMETS A S, PAULI T. Towards an understanding of the self-healing capacity of asphaltic mixtures[J]. Heron, 2011, 56(1): 45-74.
|
[81] |
HOU Yue, SUN Wen-juan, DAS P, et al. Coupled navier-stokes phase-field model to evaluate the microscopic phase separation in asphalt binder under thermal loading[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016100-1-8.
|
[82] |
HOU Yue, WANG Lin-bing, WANG Da-wei, et al. Characterization of bitumen micro-mechanical behaviors using AFM, phase dynamics theory and MD simulation[J]. Materials, 2017, 10(2): 1-16.
|
[83] |
HOU Yue, WANG Lin-bing, PAULI T, et al. Investigation of the asphalt self-healing mechanism using a phase-field model[J]. Journal of Materials in Civil Engineering, 2014, 27(3): 1-28.
|
[84] |
梁明. 聚合物改性沥青多相体系的流变学和形态学研究[D]. 青岛: 中国石油大学(华东), 2017.
LIANG Ming. Rheology and morphology for the heterogeneous system of polymer modified asphalt[D]. Qingdao: China University of Petroleum (East China), 2017. (in Chinese).
|
[85] |
LIANG Ming, XIN Xue, FAN Wei-yu, et al. Phase field simulation and microscopic observation of phase separation and thermal stability of polymer modified asphalt[J]. Construction and Building Materials, 2019, 204: 132-143. doi: 10.1016/j.conbuildmat.2019.01.180
|
[86] |
FALLAH F, KHABAZ F, KIM Y R, et al. Molecular dynamics modeling and simulation of bituminous binder chemical aging due to variation of oxidation level and saturate-aromatic-resin-asphaltene fraction[J]. Fuel, 2019, 237: 71-80. doi: 10.1016/j.fuel.2018.09.110
|
[87] |
KIM K W, KIM K, DOH Y S, et al. Estimation of RAPs binder viscosity using GPC without binder recovery[J]. Journal of Materials in Civil Engineering, 2006, 18(4): 561-567. doi: 10.1061/(ASCE)0899-1561(2006)18:4(561)
|
[88] |
JENNINGS W. Prediction of asphalt performance by HP-GPC(with discussion)[R]. St Paul: Association of Asphalt Paving Technologists, 1985.
|
[89] |
杨震, 张肖宁, 虞将苗, 等. 基质沥青老化前后多尺度特性研究[J]. 建筑材料学报, 2018, 21(3): 420-425. doi: 10.3969/j.issn.1007-9629.2018.03.012
YANG Zhen, ZHANG Xiao-ning, YU Jiang-miao, et al. Study on multi-scale characteristics of matrix asphalt before and after aging[J]. Journal of Building Materials, 2018, 21(3): 420-425. (in Chinese). doi: 10.3969/j.issn.1007-9629.2018.03.012
|
[90] |
MOSCHOPEDIS S E, SPEIGHT J G. The effect of air blowing on the properties and constitution of a natural bitumen[J]. Journal of Materials Science, 1977, 12: 990-998. doi: 10.1007/BF00540983
|
[91] |
BAEK S H, KIM H H, DOH Y S, et al. Estimation of high-temperature properties of rubberized asphalt using chromatograph[J]. KSCE Journal of Civil Engineering, 2009, 13(3): 161-167. doi: 10.1007/s12205-009-0161-1
|
[92] |
HOU Xiang-dao, LYU Song-tao, CHEN Zheng, et al. Applications of fourier transform infrared spectroscopy technologies on asphalt materials[J]. Measurement, 2018, 121: 304-316. doi: 10.1016/j.measurement.2018.03.001
|
[93] |
LIU Hong-ying, HAO Pei-wen, WANG Hai-nian, et al. Effects of physio-chemical factors on asphalt aging behavior[J]. Journal of Materials in Civil Engineering, 2014, 26(1): 190-197. doi: 10.1061/(ASCE)MT.1943-5533.0000786
|
[94] |
LU Xiao-hu, ISACSSON U. Effect of ageing on bitumen chemistry and rheology[J]. Construction and Building Materials, 2002, 16: 15-22. doi: 10.1016/S0950-0618(01)00033-2
|
[95] |
PETERSEN J C, GLASER R. Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited[J]. Road Materials and Pavement Design, 2011, 12(4): 795-819. doi: 10.1080/14680629.2011.9713895
|
[96] |
GUNDLA A. Understanding viscoelastic behavior of asphalt binders through molecular structure investigation[D]. Phoenix: Arizona State University, 2018.
|
[97] |
HUNG A M, FINI E H. Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes[J]. Fuel, 2019, 242: 408-415. doi: 10.1016/j.fuel.2019.01.085
|
[98] |
ZHAO Yong-li, GU Fan, XU Jing, et al. Analysis of aging mechanism of SBS polymer modified asphalt based on Fourier transform infrared spectrum[J]. Journal of Wuhan University of Technology-Mater, 2010, 25(6): 1047-1052. doi: 10.1007/s11595-010-0147-3
|
[99] |
KARLSSON R, ISACSSON U. Application of FTIR-ATR to characterization of bitumen rejuvenator diffusion[J]. Journal of Materials in Civil Engineering, 2003, 15(2): 157-165. doi: 10.1061/(ASCE)0899-1561(2003)15:2(157)
|
[100] |
TANG Nai-peng, HUANG Wei-dong, XIAO Fei-peng. Chemical and rheological investigation of high-cured crumb rubber-modified asphalt[J]. Construction and Building Materials, 2016, 123: 847-854. doi: 10.1016/j.conbuildmat.2016.07.131
|
[101] |
PUTMAN B J, AMIRKHANIAN S N. Characterization of the interaction effect of crumb rubber modified binders using HP-GPC[J]. Journal of Materials in Civil Engineering, 2010, 22(2): 153-159. doi: 10.1061/(ASCE)0899-1561(2010)22:2(153)
|
[102] |
韩晶晶, 储祥蔷. 利用中子散射探索生命世界中的物理奥秘[J]. 物理, 2019, 48(12): 780-789. doi: 10.7693/wl20191202
HAN Jing-jing, CHU Xiang-qiang. Using neutron scattering to explore the mysteries in biophysical sciences[J]. Physics, 2019, 48(12): 780-789. (in Chinese). doi: 10.7693/wl20191202
|
[103] |
KOSHARI S. Characterization of lysozyme adsorption in cellulosic chromatographic materials using small-angle neutron scattering[D]. Newark: University of Delaware, 2014.
|
[104] |
LOPEZ-BARRON C R, LI Dong-cui, WAGNER J, et al. Triblock copolymer self-assembly in ionic liquids: effect of PEO block length on the self-assembly of PEO-PPO-PEO in Ethylammonium Nitrate[J]. Macromolecules, 2014, 47(21): 7484-7495. doi: 10.1021/ma501238w
|
[105] |
STORM D A, SHEU E Y. Characterization of colloidal asphaltenic particles in heavy oil[J]. Fuel, 1995, 74(8): 1140-1145. doi: 10.1016/0016-2361(95)00062-A
|
[106] |
LIU Y C, SHEU E Y, CHEN S H, et al. Fractal structure of asphaltenes in toluene[J]. Fuel, 1995, 74(9): 1352-1356. doi: 10.1016/0016-2361(95)00098-P
|
[107] |
EYSSAUTIER J, LEVITZ P, ESPINAT D, et al. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering[J]. Journal of Physical Chemistry B, 2011, 115(21): 6827-6837. doi: 10.1021/jp111468d
|
[108] |
SCHMETS A, KRINGOS N, PAULI T, et al. On the existence of wax-induced phase separation in bitumen[J]. International Journal of Pavement Engineering, 2010, 11(6): 555-563. doi: 10.1080/10298436.2010.488730
|
[109] |
HUANG Bao-shan, ZHANG Yang, SHU Xiang, et al. Neutron scattering for moisture detection in foamed asphalt[J]. Journal of Materials in Civil Engineering, 2013, 25(7): 932-938. doi: 10.1061/(ASCE)MT.1943-5533.0000762
|
[110] |
鲍幸峰, 方积年. 原子力显微镜在生物大分子结构研究中的应用进展[J]. 分析化学, 2000, 28(10): 1300-1307. doi: 10.3321/j.issn:0253-3820.2000.10.028
BAO Xing-feng, FANG Ji-nian. The advances of applications in studying the structures of biological macromolecules by atomic force microscopy[J]. Chinese Journal of Analytical Chemistry, 2000, 28(10): 1300-1307. (in Chinese). doi: 10.3321/j.issn:0253-3820.2000.10.028
|
[111] |
CARBOGNANI L, DELIMA L, OREA M, et al. Studies on large crude oil alkanes. Ⅱ: Isolation and characterization of aromatic waxes and waxy asphaltenes[J]. Petroleum Science and Technology, 2000, 18(5/6): 607-634.
|
[112] |
PAULI A T, GRIMES R W, BEEMER A G, et al. Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy[J]. International Journal of Pavement Engineering, 2011, 12(4): 291-309. doi: 10.1080/10298436.2011.575942
|
[113] |
LOEBER L, SUTTON O, MOREL J, et al. New direct observations of asphalts and asphalt binder by scanning electron microscopy and atomic force microscopy[J]. Journal of Microscopy, 1996, 182(1): 32-39. doi: 10.1046/j.1365-2818.1996.134416.x
|
[114] |
REBELO L M, DE SOUSA J S, ABREU A S, et al. Aging of asphaltic binders investigated with atomic force microscopy[J]. Fuel, 2014, 117: 15-25. doi: 10.1016/j.fuel.2013.09.018
|
[115] |
SOENEN H, BESAMUSCA J, FISCHER H R, et al. Laboratory investigation of bitumen based on round robin DSC and AFM tests[J]. Materials and Structures, 2014, 47(7): 1205-1220. doi: 10.1617/s11527-013-0123-4
|
[116] |
YU Xiao-kong, BURNHAM N A, TAO Ming-jiang. Surface microstructure of bitumen characterized by atomic force microscopy[J]. Advances in Colloid and Interface Science, 2015, 218: 17-33. doi: 10.1016/j.cis.2015.01.003
|
[117] |
ZHANG H L, WANG H C, YU J Y. Effect of aging on morphology of organo-montmorillonite modified bitumen by atomic force microscopy[J]. Journal of Microscopy, 2011, 242: 37-45. doi: 10.1111/j.1365-2818.2010.03435.x
|
[118] |
HOFKO B, EBERHARDSTEINER L, FUSSL J, et al. Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen[J]. Materials and Structures, 2015, 49(3): 829-841.
|
[119] |
LU Xiao-hu, LANGTON M, OLOFSSON P, et al. Wax morphology in bitumen[J]. Journal of Materials Science, 2005, 40(8): 1893-1900. doi: 10.1007/s10853-005-1208-4
|
[120] |
DEMORAES M B, PEREIRA R B, SIMAO R A, et al. High temperature AFM study of CAP 30/45 pen grade bitumen[J]. Journal of Microscopy, 2010, 239(1): 46-53. doi: 10.1111/j.1365-2818.2009.03354.x
|
[121] |
YU Xiao-kong, BURNHAM N A, TAO Ming-jiang. Surface microstructure of bitumen characterized by atomic force microscopy[J]. Advances in Colloid and Interface Science, 2015, 218: 17-33. doi: 10.1016/j.cis.2015.01.003
|
[122] |
LU Xiao-hu, REDELIUS P. Compositional and structural characterization of waxes isolated from bitumens[J]. Energy and Fuels, 2006, 20(2): 653-660. doi: 10.1021/ef0503414
|
[123] |
XING Cheng-wei, LIU Li-ping, CUI Yi, et al. Analysis of base bitumen chemical composition and aging behaviors via atomic force microscopy-based infrared spectroscopy[J]. Fuel, 2020, 264: 116845-1-12.
|
[124] |
DOURADO E R, SIMAO R A, LEITE L F M. Mechanical properties of asphalt binders evaluated by atomic force microscopy[J]. Journal of Microscopy, 2012, 245(2): 119-128. doi: 10.1111/j.1365-2818.2011.03552.x
|
[125] |
LYNE A L, WALLQVIST V, BIRGISSON B. Adhesive surface characteristics of bitumen binders investigated by atomic force microscopy[J]. Fuel, 2013, 113: 248-256. doi: 10.1016/j.fuel.2013.05.042
|
[126] |
ALLEN R G, LITTLE D N, BHASIN A. Structural characterization of micromechanical properties in asphalt using atomic force microscopy[J]. Journal of Materials in Civil Engineering, 2012, 24(10): 1317-1327. doi: 10.1061/(ASCE)MT.1943-5533.0000510
|
[127] |
ALLEN R G, LITTLE D N, BHASIN A, et al. The effects of chemical composition on asphalt microstructure and their association to pavement performance[J]. International Journal of Pavement Engineering, 2014, 15(1): 9-22. doi: 10.1080/10298436.2013.836192
|
[128] |
MASSON J F, LEBLOND V, MARGESON J, et al. Low-temperature bitumen stiffness and viscous paraffinic nano- and micro-domains by cryogenic AFM and PDM[J]. Journal of Microscopy, 2007, 227(3): 191-202. doi: 10.1111/j.1365-2818.2007.01796.x
|
[129] |
朱琳. 扫描电子显微镜及其在材料科学中的应用[J]. 吉林化工学院学报, 2007, 24(2): 81-84, 92. doi: 10.3969/j.issn.1007-2853.2007.02.024
ZHU Lin. SEM and its application in material science[J]. Journal of Jilin Institute of Chemical Technology, 2007, 24(2): 81-84, 92. (in Chinese). doi: 10.3969/j.issn.1007-2853.2007.02.024
|
[130] |
李剑平. 扫描电子显微镜对样品的要求及样品的制备[J]. 分析测试技术与仪器, 2007, 13(1): 74-77. doi: 10.3969/j.issn.1006-3757.2007.01.017
LI Jian-ping. Requirements and preparation of scanning electron microscope sample[J]. Analysis and Testing Technology and Instruments, 2007, 13(1): 74-77. (in Chinese). doi: 10.3969/j.issn.1006-3757.2007.01.017
|
[131] |
CHEN J S, LIN K Y. Mechanism and behavior of bitumen strength reinforcement using fibers[J]. Journal of Materials Science, 2005, 40(1): 87-95. doi: 10.1007/s10853-005-5691-4
|
[132] |
GASKIN J. Onbitumen microstructure and the effects of crack healing[D]. Nottingham: University of Nottingham, 2013.
|
[133] |
CHEN J S, LIAO M C, TSAI H H. Evaluation and optimization of the engineering properties of polymer-modified asphalt[J]. Journal of Failure Analysis and Prevention, 2002, 2(3): 75-83.
|
[134] |
KHATTAK M J, BALADI G Y, DRZAL L T. Low temperature binder-aggregate adhesion and mechanistic characteristics of polymer modified asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2007, 19(5): 411-422. doi: 10.1061/(ASCE)0899-1561(2007)19:5(411)
|
[135] |
SINGH B, KUMAR L, GUPTA M, et al. Effect of activated crumb rubber on the properties of crumb rubber-modified bitumen[J]. Journal of Applied Polymer Science, 2013, 129(5): 2821-2831. doi: 10.1002/app.38991
|
[136] |
KUMAR S, AGRAWAL K M, FISCHER P. Identification of acyclic isoprenoid hydrocarbons in wax derived from tank bottom sludge[J]. Energy and Fuels, 2004, 18(5): 1588-1594. doi: 10.1021/ef034027q
|
[137] |
KANE M, DJABOUROV M, VOLLE J L, et al. Morphology of paraffin crystals in waxy crude oils cooled in quiescent conditions and under flow[J]. Fuel, 2003, 82: 127-135. doi: 10.1016/S0016-2361(02)00222-3
|
[138] |
YEN T F, GORDON ERDMAN J, POLLACK S S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction[J]. Analytical Chemistry, 1961, 33(11): 1587-1594. doi: 10.1021/ac60179a039
|
[139] |
SWANSON J M. A contribution to the physical chemistry of the asphalts[J]. The Journal of Physical Chemistry, 1941, 46(1): 141-150.
|
[140] |
MURGICH J, RODRIGUEZ M J, ARAY Y. Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins[J]. Energy and Fuels, 1996, 10: 68-76. doi: 10.1021/ef950112p
|
[141] |
FISCHER H R, CERNESCU A. Relation of chemical composition to asphalt microstructure—details and properties of micro-structures in bitumen as seen by thermal and friction force microscopy and by scanning near-filed optical microscopy[J]. Fuel, 2015, 153: 628-633. doi: 10.1016/j.fuel.2015.03.043
|
[142] |
于双林. 渣油加氢体系胶体性质的研究[D]. 北京: 中国石油大学, 2010.
YU Shuang-lin. Study on the colloidal properties of residue hydroprocessing system[D]. Beijing: China University of Petroleum, 2010. (in Chinese).
|
[143] |
CHEN J S, LIAO M C, LIN C H. Determination of polymer content in modified bitumen[J]. Materials and Structures, 2003, 36: 594-598. doi: 10.1007/BF02483278
|
[144] |
WANG Lan, XING Yong-ming, CHANG Chun-qing. Microscopic and dynamic rheological characteristics of crumb rubber modified asphalt[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2010, 25(6): 1022-1027. doi: 10.1007/s11595-010-0142-8
|
[145] |
VENKATRAMAYYA V, VINAYAKA RAM V, KRISHNAIAH S, et al. Performance of VG30 paving grade bitumen modified with polyphosphoric acid at medium and high temperature regimes[J]. Construction and Building Materials, 2016, 105: 157-164. doi: 10.1016/j.conbuildmat.2015.12.021
|
[146] |
WANG Shi-feng, WANG Qiang, WU Xiao-yu, et al. Asphalt modified by thermoplastic elastomer based on recycled rubber[J]. Construction and Building Materials, 2015, 93: 678-684. doi: 10.1016/j.conbuildmat.2015.06.047
|
[147] |
MOKHTARI A, DAVID LEE H, WILLIAMS R C, et al. A novel approach to evaluate fracture surfaces of aged and rejuvenator-restored asphalt using cryo-SEM and image analysis techniques[J]. Construction and Building Materials, 2017, 133: 301-313. doi: 10.1016/j.conbuildmat.2016.12.075
|
[148] |
YAO Hui, YOU Zhan-ping, LI Liang, et al. Rheological properties and chemical bonding of asphalt modified with Nanosilica[J]. Journal of Materials in Civil Engineering, 2013, 25: 1619-1630. doi: 10.1061/(ASCE)MT.1943-5533.0000690
|
[149] |
SHEN Shi-hui, LU Xin, LIU Li-ping, et al. Investigation of the influence of crack width on healing properties of asphalt binders at multi-scale levels[J]. Construction and Building Materials, 2016, 126: 197-205. doi: 10.1016/j.conbuildmat.2016.08.107
|
[150] |
MORRISON G R, HESP S A M. A new look at rubber-modified asphalt binders[J]. Journal of Materials Science, 1995, 30(10): 2584-2590. doi: 10.1007/BF00362138
|
[151] |
ROZEVELD S J, EUGENE SHIN E, BHURKE A, et al. Network morphology of straight and polymer modified asphalt cements[J]. Microscopy Research and Technique, 1997, 38: 529-543. doi: 10.1002/(SICI)1097-0029(19970901)38:5<529::AID-JEMT11>3.0.CO;2-O
|
[152] |
KHATTAK M J, BALADI G Y, DRZAL L Y. Binder rheology, morphology and adhesion effects on asphalt mixtures[J]. Geotechnical Engineering for Transportation Projects, 2004(126): 925-937.
|
[153] |
LIU Hong-ying, CHEN Zhi-jun, WANG Hai-nian, et al, Investigation of the rheological modification mechanism of crumb rubber modified asphalt (CRMA) containing TOR additive[J]. Construction and Building Materials, 2014, 67: 225-233. doi: 10.1016/j.conbuildmat.2013.11.031
|
[154] |
SOBOLEV K, VIVIAN I F, SAHA R, et al. The effect of fly ash on the rheological properties of bituminous materials[J]. Fuel, 2014, 116: 471-477. doi: 10.1016/j.fuel.2013.07.123
|
[155] |
YAO Hui, YOU Zhan-ping, LI Liang, et al. Performance of asphalt binder blended with non-modified and polymer-modified nanoclay[J]. Construction and Building Materials, 2012, 35: 159-170. doi: 10.1016/j.conbuildmat.2012.02.056
|
[156] |
WANG Ying-yuan, SU Jun-feng, SCHLANGEN E, et al. Fabrication and characterization of self-healing microcapsules containing bituminous rejuvenator by a nano-inorganic/organic hybrid method[J]. Construction and Building Materials, 2016, 121: 471-482. doi: 10.1016/j.conbuildmat.2016.06.021
|
[157] |
YANG Peng, HAN Shan, SU Jun-feng, et al. Design of self-healing microcapsules containing bituminous rejuvenator with nano-CaCO3/organic composite shell: mechanical properties, thermal stability, and compactability[J]. Polymer Composites, 2018, 39: 1441-1451. doi: 10.1002/pc.24343
|
[158] |
FINI E H, HAJIKARIMI P, RAHI M, et al. Physiochemical, rheological, and oxidative aging characteristics of asphalt binder in the presence of mesoporous silica nanoparticles[J]. Journal of Materials in Civil Engineering, 2016, 28(2): 04015133-1-9.
|
[159] |
FANG Chang-qing, YU Xin, YU Rui-ren, et al. Preparation and properties of isocyanate and nano particles composite modified asphalt[J]. Construction and Building Materials, 2016, 119: 113-118. doi: 10.1016/j.conbuildmat.2016.04.099
|
[160] |
ZHANG Hong-liang, SU Man-man, ZHAO Shi-feng, et al. High and low temperature properties of nano-particles/polymer modified asphalt[J]. Construction and Building Materials, 2016, 114: 323-332. doi: 10.1016/j.conbuildmat.2016.03.118
|
[161] |
孙俊. 外场作用下材料表/界面结构演变的原位透射电子显微学研究[D]. 南京: 东南大学, 2017.
SUN Jun. In situ transmission electron microscopy study on the structural evolution of materials surface/interaface under external field[D]. Nanjing: Southeast University, 2017. (in Chinese).
|
[162] |
LI Sheng-hua, LIU Chen-guang, QUE Guo-he, et al. Colloidal structures of vacuum residua and their thermal stability in terms of saturate, aromatic, resin and asphaltene composition[J]. Journal of Petroleum Science and Engineering, 1999, 22(1-3): 37-45. doi: 10.1016/S0920-4105(98)00055-2
|
[163] |
LI Sheng-hua, LIU Chen-guang, QUE Guo-he, et al. Colloidal structures of three Chinese petroleum vacuum residues[J]. Fuel, 1996, 75(8): 1025-1029. doi: 10.1016/0016-2361(95)00315-0
|
[164] |
WANG Yu-hong, ZHANG Ke-cheng. Different forms of asphaltene microstructures discovered in transmission electron microscopy[J]. Journal of Materials in Civil Engineering, 2016, 28(11): 04016137-1-12.
|