LIN Chun-jiao, ZHENG Jie-lian. Four-working-platform pouring method for main arch ring concrete of rigid skeleton arch bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 82-89. doi: 10.19818/j.cnki.1671-1637.2020.06.007
Citation: LIN Chun-jiao, ZHENG Jie-lian. Four-working-platform pouring method for main arch ring concrete of rigid skeleton arch bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 82-89. doi: 10.19818/j.cnki.1671-1637.2020.06.007

Four-working-platform pouring method for main arch ring concrete of rigid skeleton arch bridge

doi: 10.19818/j.cnki.1671-1637.2020.06.007
Funds:

National Natural Science Foundation of China 51878186

Science and Technology Program of Sichuan Province 2018GZ0052

More Information
  • Author Bio:

    LIN Chun-jiao(1971-), female, associate professor, PhD, llccwj@163.com

    ZHENG Jie-lian(1941-), male, professor, academician of Chinese Academy of Engineering, zhengjielian@163.com

  • Received Date: 2020-06-16
  • Publish Date: 2020-06-25
  • To investigate a method of setting working platforms during the concrete pouring for the main arch ring of a rigid skeleton under a reasonable stress and with a convenient and economical construction and taking the Nanpanjiang Super Long Span Bridge as an object, the transient stress variation process of rigid skeleton caused by the first ring concrete symmetrically poured from the two arch springs was analyzed. The stress process curves of the main control section of rigid skeleton were obtained. A concrete pouring method for the main arch ring was proposed with four working platforms arranged symmetrically along the longitudinal arch, and the working platforms were set at the arch spring section and the peak of control stress process curve, such that the stress increments on the rigid skeleton generated by the cocrete of two working platforms within the half span had different signs to offest part of the stress. By fitting the continuous functions of the ascending and descending sections of absolute control stress process curve, the pouring length and sequence of concrete was reasonably adjusted to reduce the transient stress and deformation of rigid skeleton. The construction operability and economy of the four-working-platform method were discussed, and the stress and deformation of rigid skeleton during the concrete pouring process for the first ring of main arch ring of Nanpanjiang Super Long Span Bridge were analyzed. Research result shows that the stress process curve of concrete filled in the arch spring tube represents a control stress and single wave curve. The proposed four-working-platform method with the order of first along the span, then in arch spring and with the length calculated by the fitting function is reasonable for the concrete pouring of Nanpanjiang Super Long Span Bridge. The maximum transient tensile and compressive stresses of rigid skeleton reduce to 0.4 and 23.5 MPa, respectively, which are well controlled within the range of material strength. The vault has no upward deflection, the maximum transient deflection and eternal ring deflection are 192 and 82 mm, respectively, and the arch axis does not deform repeatedly. The four-working-platform pouring method requires less equipment and personnel, is economical, and has good operability. It is suitable for the concrete pouring for the main arch ring of rigid skeleton arch bridges, and can be used for similar bridges.

     

  • loading
  • [1]
    郑皆连. 我国大跨径混凝土拱桥的发展新趋势[J]. 重庆交通大学学报(自然科学版), 2016, 35(增1): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2016S1002.htm

    ZHENG Jie-lian. New development tendency of large-span reinforced concrete arch bridge in China[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(S1): 8-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2016S1002.htm
    [2]
    陈宝春, 刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002

    CHEN Bao-chun, LIU Jun-ping. Review of construction and technology development of arch bridges in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.01.002
    [3]
    ZHENG Jie-lian, WANG Jian-jun. Concrete-filled steel tube arch bridges in China[J]. Engineering, 2018, 4(1): 143-155. doi: 10.1016/j.eng.2017.12.003
    [4]
    郑皆连, 王建军, 牟廷敏, 等. 700 m级钢管混凝土拱桥设计与建造可行性研究[J]. 中国工程科学, 2014, 16(8): 33-37. doi: 10.3969/j.issn.1009-1742.2014.08.004

    ZHENG Jie-lian, WANG Jian-jun, MOU Ting-min, et al. Feasibility study on design and construction of concrete filled steel tubular arch bridge with a span of 700 m[J]. Strategic Study of CAE, 2014, 16(8): 33-37. (in Chinese). doi: 10.3969/j.issn.1009-1742.2014.08.004
    [5]
    赵人达, 张正阳. 我国钢管混凝土劲性骨架拱桥发展综述[J]. 桥梁建设, 2016, 46(6): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606010.htm

    ZHAO Ren-da, ZHANG Zheng-yang. A summary of development of concrete-filled steel tube framed arch bridges in China[J]. Bridge Construction, 2016, 46(6): 45-50. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606010.htm
    [6]
    游云川, 郭伦波. 大跨拱桥劲性骨架设计研究[J]. 交通科技, 2019(2): 5-8, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201902002.htm

    YOU Yun-chuan, GUO Lun-bo. The research on design of the stiff skeleton of long-span arch bridge[J]. Transportation Science and Technology, 2019(2): 5-8, 12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201902002.htm
    [7]
    CHEN Bao-chun, WANG T L. Overview of concrete filled steel tube arch bridges in China[J]. Practice Periodical on Structural Design and Construction, 2009, 14(2): 70-80. doi: 10.1061/(ASCE)1084-0680(2009)14:2(70)
    [8]
    HU Nan, DAI Gong-lian, YAN Bin, et al. Recent development of design and construction of medium and long span high-speed railway bridges in China[J]. Engineering Structures, 2014, 74: 233-241. doi: 10.1016/j.engstruct.2014.05.052
    [9]
    韦建刚, 陈宝春. 国外大跨度混凝土拱桥的应用与研究进展[J]. 世界桥梁, 2009(2): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL200902002.htm

    WEI Jian-gang, CHEN Bao-chun. Application and research advancement of long span concrete arch bridges abroad[J]. World Bridges, 2009(2): 4-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL200902002.htm
    [10]
    KANG Chong-jie, SCHNEIDER S, WENNER M, et al. Development of design and construction of high-speed railway bridges in Germany[J]. Engineering Structures, 2018, 163: 184-196. doi: 10.1016/j.engstruct.2018.02.059
    [11]
    JOHN J S. Construction of the Hoover Dam Bypass[J]. Concrete International, 2011, 33(2): 30-35.
    [12]
    GOODYEAR D. Design of the New Mike O'callaghan Pat Tillman Memorial Bridge at Hoover Dam[C]∥AMES D, DROESSLER T L, HOIT M. Structures Congress 2011. Reston: ASCE, 2011: 1806-1815.
    [13]
    KEATON J R. Earthquake ground motion for design of Hoover Dam Bypass Bridge (US Highway 93)[C]∥YEGIAN M K, KAVAZANJIAN E. Proceedings of Geotechnical Engineering for Transportation Projects. Reston: ASCE, 2004: 1721-1728.
    [14]
    GRANATA M F, MARGIOTTA P, RECUPERO A, et al. Partial elastic scheme method in cantilever construction of concrete arch bridges[J]. Journal of Bridge Engineering, 2013, 18(7): 663-672. doi: 10.1061/(ASCE)BE.1943-5592.0000396
    [15]
    高玉峰, 蒲黔辉, 李晓斌, 等. 悬臂浇筑法在国外大跨度混凝土拱桥施工中的应用发展[J]. 世界桥梁, 2008(1): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL200801005.htm

    GAO Yu-feng, PU Qian-hui, LI Xiao-bin, et al. Application and development of cantilever casting method for construction of long span concrete arch bridges abroad[J]. World Bridges, 2008(1): 18-21. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL200801005.htm
    [16]
    CANDRLIC V, RADIC J, GUKOV I. Research of concrete arch bridges up to 1 000 m in span[C]//ROCA P, OÑATE E. Proceedings of the 4th International Conference on Arch Bridge. Barcelona: CMNE, 2004: 538-547.
    [17]
    胡大琳, 陈定市, 赵小由, 等. 大跨径钢筋混凝土拱桥悬臂浇筑施工控制[J]. 交通运输工程学报, 2016, 16(1): 25-36. doi: 10.3969/j.issn.1671-1637.2016.01.004

    HU Da-lin, CHEN Ding-shi, ZHAO Xiao-you, et al. Construction control of cantilever casting of long span reinforced concrete arch bridge[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 25-36. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.01.004
    [18]
    TROYANO L F. Procedures for the construction of large concrete arches[C]//ROCA P, OÑATE E. Proceedings of the 4th International Conference on Arch Bridge. Barcelona: CMNE, 2004: 54-64.
    [19]
    刘钟仁, 程懋芳. 180 m跨有平衡重平转钢筋混凝土拱桥施工[J]. 城市道桥与防洪, 2019(1): 115-117. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDQ201901039.htm

    LIU Zhong-ren, CHENG Mao-fang. Construction of 180 m-span flat-turn reinforced concrete arch bridge with balancing weight[J]. Urban Roads Bridges and Flood Control, 2019(1): 115-117. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSDQ201901039.htm
    [20]
    冯丛. 云桂铁路南盘江特大劲性混凝土拱桥施工技术探讨[J]. 铁道建筑技术, 2012(8): 77-80. doi: 10.3969/j.issn.1009-4539.2012.08.021

    FENG Cong. Discussion on Yun-Gui Railway Nanpanjiang Grand CFST Arch Bridge construction technology[J]. Railway Construction Technology, 2012(8): 77-80. (in Chinese). doi: 10.3969/j.issn.1009-4539.2012.08.021
    [21]
    郑益新, 张鸿昆. 沪昆客专北盘江特大桥劲性骨架施工控制研究[J]. 铁道科学与工程学报, 2015, 12(3): 496-501. doi: 10.3969/j.issn.1672-7029.2015.03.007

    ZHENG Yi-xin, ZHANG Hong-kun. Study on construction control of the stiff skeleton of Beipanjiang Long Span Bridge on Shanghai-Kunming High-Speed Railway[J]. Journal of Railway Science and Engineering, 2015, 12(3): 496-501. (in Chinese). doi: 10.3969/j.issn.1672-7029.2015.03.007
    [22]
    史永亮. 大跨度钢管混凝土劲性骨架箱形拱桥平转施工稳定性研究[J]. 铁道建筑, 2020, 60(7): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202007008.htm

    SHI Yong-liang. Stability research on horizontal rotation construction of long-span box-arch bridge with concrete-filled steel tube stiff skeleton[J]. Railway Engineering, 2020, 60(7): 34-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202007008.htm
    [23]
    王小飞. 铁路大跨度劲性骨架拱桥外包混凝土浇筑方案分析[J]. 铁道建筑, 2020, 60(5): 11-14, 29. doi: 10.3969/j.issn.1003-1995.2020.05.03

    WANG Xiao-fei. Analysis on pouring scheme of surrounding concrete for railway large span arch bridge with stiff skeleton[J]. Railway Engineering, 2020, 60(5): 11-14, 29. (in Chinese). doi: 10.3969/j.issn.1003-1995.2020.05.03
    [24]
    任为东. 大瑞铁路澜沧江特大桥施工关键技术研究[J]. 铁道标准设计, 2021, DOI: 10.13238/j.issn.1004-2954.202007040006.

    REN Wei-dong. Research on the key construction technology of the Lancang River Super Major Bridge of Dali-Ruili Railway[J]. Railway Standard Design, 2021, DOI: 10.13238/j.issn.1004-2954.202007040006.(in Chinese).
    [25]
    于长彬. 大跨度拱桥拱圈混凝土斜拉扣挂和分环分段组合施工技术[J]. 铁道建筑技术, 2016(6): 1-4. doi: 10.3969/j.issn.1009-4539.2016.06.001

    YU Chang-bin. Construction technology on concrete cable-stayed and buckle-hanging combined with the ring-section of large-span arch bridge's arch ring[J]. Railway Construction Technology, 2016(6): 1-4. (in Chinese). doi: 10.3969/j.issn.1009-4539.2016.06.001
    [26]
    郑皆连. 在劲性拱骨架上实现混凝土连续浇注的探讨[J]. 重庆交通大学学报(自然科学版), 2011, 30(增2): 1099-1105, 1158. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2011S2005.htm

    ZHENG Jie-lian. Discussion on placing concrete uninterruptedly on closure arch rigid skeleton[J]. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(S2): 1099-1105, 1158. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT2011S2005.htm
    [27]
    林春姣, 郑皆连. 南盘江特大桥拱圈混凝土斜拉扣挂法施工分析[J]. 桥梁建设, 2016, 46(5): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201605023.htm

    LIN Chun-jiao, ZHENG Jie-lian. Analysis of construction of main arch rib concrete of Nanpan River Bridge using fastening stay method[J]. Bridge Construction, 2016, 46(5): 116-121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201605023.htm
    [28]
    林春姣, 郑皆连, 李翔, 等. 斜拉扣索调整南盘江特大桥拱圈的结构应力[J]. 广西大学学报(自然科学版), 2017, 42(1): 274-283. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201701035.htm

    LIN Chun-jiao, ZHENG Jie-lian, LI Xiang, et al. Structural stress adjustment of arch rib of Nanpan River Long-Span Bridge with diagonal stay cables[J]. Journal of Guangxi University (Natural Science Edition), 2017, 42(1): 274-283. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201701035.htm
    [29]
    张富贵, 张永水, 董义, 等. 大跨劲性骨架拱桥外包混凝土浇注方案[J]. 重庆交通大学学报(自然科学版), 2012, 31(2): 210-213, 238. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201202011.htm

    ZHANG Fu-gui, ZHANG Yong-shui, DONG Yi, et al. Outscourcing concrete pouring scheme of long-span stiff skeleton arch bridge[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(2): 210-213, 238. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201202011.htm
    [30]
    吴海军, 王藐民, 陆萍. 劲性骨架混凝土拱桥外包混凝土分环浇筑方案对结构受力的影响[J]. 重庆交通大学学报(自然科学版), 2017, 36(11): 1-6. doi: 10.3969/j.issn.1674-0696.2017.11.01

    WU Hai-jun, WANG Miao-min, LIU Ping. Influence of pouring cycle schemes of externally wrapped concrete of concrete arch bridge with stiff skeleton on structure mechanics[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(11): 1-6. (in Chinese). doi: 10.3969/j.issn.1674-0696.2017.11.01
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (732) PDF downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return