ZHOU Jia-liang, CHEN Bao-chun, MA Xi-lun, LUO Lu-lu, HUANG Qing-wei, SU Jia-zhan. Shear performance of ultra-high performance concrete deep beams[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 117-125. doi: 10.19818/j.cnki.1671-1637.2020.06.010
Citation: ZHOU Jia-liang, CHEN Bao-chun, MA Xi-lun, LUO Lu-lu, HUANG Qing-wei, SU Jia-zhan. Shear performance of ultra-high performance concrete deep beams[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 117-125. doi: 10.19818/j.cnki.1671-1637.2020.06.010

Shear performance of ultra-high performance concrete deep beams

doi: 10.19818/j.cnki.1671-1637.2020.06.010
Funds:

National Key Research and Develo pment Program of China 2018YFC0705400

National Natural Science Foundation of China 51878178

Natural Science Foundation of Fujian Province 2018J01772

More Information
  • Author Bio:

    ZHOU Jia-liang(1990-), male, doctoral student, 535453620@qq.com

    CHEN Bao-chun(1958-), male, professor, PhD, baochunchen@fzu.edu.cn

  • Received Date: 2020-07-16
  • Publish Date: 2020-12-25
  • To promote the application of ultra-high performance concrete(UHPC) deep beams, shear performance tests were conducted on four UHPC deep beams by taking the concrete strength as the main parameter, and the C40 and C80 concrete deep beams were tested for comparison. The load-deflection curves, failure modes, reinforcement strains, crack patterns and ultimate loads of UHPC deep beams were analyzed. The method specified in the Code for Design of Concrete Structures(GB 50010—2010) was used to determine the shear strengths of six deep beam specimens, to discuss whether the current method for calculating the shear capacity of ordinary concrete deep beams is applicable to UHPC deep beams. Research result shows that the greater the concrete strength is, the greater the stiffness of the deep beam under the same load is. The stiffness of UHPC specimen in its elastic stage before the cracking increases slightly with the increase of steel fiber content. Similar to the C40 and C80 concrete deep beams, the UHPC deep beams exhibit bending-shear and web-shear cracks. When the load reaches 13%-22% and 18%-34% of the ultimate load, the two types of cracks appear successively. Beam and arch stress mechanisms are both present during the loading of UHPC deep beams. The beam stress mechanism dominates the early phases of loading process, whereas the arch stress mechanism dominates the latter stages of this process. The UHPC deep beams exhibit a large number of densely and concentrated cracks and undergo shear-compression failure, without showing any cracks in the inverted arch area above their supports. In contrast, the C40 and C80 concrete deep beams undergo diagonal compression failure, and cracks appear in the inverted arch area above their supports. The shear bearing capacity of test beam increases in an approximately exponential manner with the increase of concrete strength. When the concrete strength increases from C40 to C80 and C190, the shear bearing capacity increase by 30.76% and 201.92%, respectively. When using the method specified in the Code for Design of Concrete Structures(GB 50010—2010) to calculate the shear bearing capacities of UHPC deep beams, the calculated and experimental shear bearing capacities show an average ratio of 0.89 and a mean squared error of 0.15. Therefore, this method can be temporally used to calculate the shear bearing capacity of UHPC deep beams, until a more accurate calculation method is available.

     

  • loading
  • [1]
    LARRARD F D, SEDRAN T. Optimization of ultra high performance concrete by the use of a packing model[J]. Cement and Concrete Research, 1994, 24(6): 997-1009. doi: 10.1016/0008-8846(94)90022-1
    [2]
    SHI Cai-jun, WU Ze-mei, XIAO Jian-fan, et al. A review on ultra high performance concrete: part Ⅰ. Raw materials and mixture design[J]. Construction and Building Materials, 2015, 101: 741-751. doi: 10.1016/j.conbuildmat.2015.10.088
    [3]
    XUE Jun-qing, BRISEGHELLA B, HUANG Fu-yun, et al. Review of ultra-high performance concrete and its application in bridge engineering[J]. Construction and Building Materials, 2020, 260: 119844-1-12. doi: 10.1016/j.conbuildmat.2020.119844
    [4]
    CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese). doi: 10.3969/j.issn.1673-2049.2014.03.002
    [5]
    MA Xi-lun, CHEN Bao-chun, YANG Yan, et al. Calculation method of shear bearing capacity of R-UHPC beam[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 16-26. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.05.002
    [6]
    LIM W Y, HONG S G. Shear tests for ultra-high performance fiber reinforced concrete (UHPFRC) beams with shear reinforcement[J]. International Journal of Concrete Structures and Materials, 2016, 10: 177-188. doi: 10.1007/s40069-016-0145-8
    [7]
    JIN Ling-zhi, WANG Long, ZHOU Jia-liang, et al. Study on shear resistance of partially prestressed UHPC thin-web beams without web reinforcement[J]. Journal of the China Railway Society, 2019, 41(2): 105-116. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201902016.htm
    [8]
    MESZÖLY T, RANDL N. Shear behavior of fiber-reinforced ultra-high performance concrete beams[J]. Engineering Structures, 2018, 168: 119-127. doi: 10.1016/j.engstruct.2018.04.075
    [9]
    JI Wen-yu, LI Wang-wang, AN Ming-zhe, et al. Shear capacity of T-section girders made of reactive powder concrete[J]. Journal of Bridge Engineering, 2018, 23(7): 04018041. doi: 10.1061/(ASCE)BE.1943-5592.0001253
    [10]
    LIANG Xing-wen, WANG Zhao-yao, YU Jing, et al. Study on shear behavior and shear bearing capacity of UHPC beams with stirrups[J]. China Civil Engineering Journal, 2018, 51(10): 56-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201810007.htm
    [11]
    THIEMICKE J, FEHLING E. Proposed model to predict the shear bearing capacity of UHPC-beams with combined reinforcement[C]∥FEHLING E, MIDDENDORF B, THIEMICKE J. 4th International Symposium on Ultra-High Performance Construction Materials. Kassel: Kassel University Press, 2016: 1-9.
    [12]
    VOO Y L, FOSTER S J, GILBERT R I. Shear strength of fibre reinforced reactive powder concrete girders without stirrups[J]. Journal of Advanced Concrete Technology, 2006, 4(1): 123-132. doi: 10.3151/jact.4.123
    [13]
    KODUR V, SOLHMIRZAEI R, AGRAWAL A, et al. Analysis of flexural and shear resistance of ultra high performance fiber reinforced concrete beams without stirrups[J]. Engineering Structures, 2018, 174: 873-884. doi: 10.1016/j.engstruct.2018.08.010
    [14]
    RUIZ M F, MUTTONI A, SAGASETA J. Shear strength of concrete members without transverse reinforcement: a mechanical approach to consistently account for size and strain effects[J]. Engineering Structures, 2015, 99: 360-372. doi: 10.1016/j.engstruct.2015.05.007
    [15]
    LIU Sheng-bing, XU Li-hua. Shear behavior of hybrid fiber reinforced high performance concrete deep beams[J]. China Civil Engineering Journal, 2013, 46(3): 29-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201303006.htm
    [16]
    LENG Yu-bing, SONG Xiao-bing. Shear strength of steel-concrete-steel sandwich deep beams: a simplified approach[J]. Advances in Structural Engineering, 2018, 22(20): 1-12.
    [17]
    LEE D H, KIM K S, HAN Sun-jin, et al. Dual potential capacity model for reinforced concrete short and deep beams subjected to shear[J]. Structural Concrete, 2018, 19(3): 76-85.
    [18]
    DEVINE R D, BARBACHYN S M, THRALL A P, et al. Experimental evaluation of deep beams with high-strength concrete and high-strength reinforcing bar[J]. ACI Structural Journal, 2018, 115(4): 1023-1036.
    [19]
    FOSTER S J, GILBERT R I. Experimental studies on high-strength concrete deep beams[J]. ACI Structural Journal, 1998, 95(4): 382-390.
    [20]
    TUCHSCHERER R G, QUESADA A. Replacement of deformed side-face steel reinforcement in deep beams with steel fibers[J]. Structures, 2015, 3: 130-136. doi: 10.1016/j.istruc.2015.03.008
    [21]
    WU Tao, WEI Hui, LIU Xi. Experimental investigation of shear models for lightweight aggregate concrete deep beams[J]. Advances in Structural Engineering, 2017, 21(1): 1-16.
    [22]
    ZHANG Ning, TAN Kang-hai, LEONG C L. Single-span deep beams subjected to unsymmetrical loads[J]. Journal of Structural Engineering, 2009, 135(3): 239-252. doi: 10.1061/(ASCE)0733-9445(2009)135:3(239)
    [23]
    CHEN Bao-chun, WEI Jian-gang, SU Jia-zhan, et al. State-of-the-art progress on application of ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2019, 36(2): 10-20. (in Chinese). doi: 10.3969/j.issn.1673-2049.2019.02.003
    [24]
    AZIZ O Q, ALI M H. Shear strength and behavior of ultra-high performance concrete fiber reinforced concrete (UHPC) deep beams without web reinforcement[J]. International Journal of Civil Engineering, 2013, 2(3): 85-96.
    [25]
    FAHMI H M, ALSHAARBAF I A S. Behavior of reactive powder concrete deep beams[C]∥Al-Nahrain University. Proceedings of 12th Scientific Conference. Baghdad: Al-Mansour Journal Press, 2013: 1-22.
    [26]
    MUHAISON S K, ABD W K, ALWAN M K. Behaviour of reactive powder rectangular deep beam with shear zone opening subjected to repeated load[J]. Journal of Engineering and Sustainable Development, 2018, 22(1): 77-94.
    [27]
    CHEN Hui, YI Wei-jian. Evaluation and modification of strut-and-tie model for simply-supported and continuous deep reinforced concrete beams without stirrups[J]. Journal of Building Structures, 2019, 40(7): 155-161. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201907017.htm
    [28]
    LIU Li-xin. An unified calculation method for shear capacity of R. C. deep beams, short beams and shallow beams[J]. Journal of Building Structures, 1995, 16(4): 13-21, 12. (in Chinese). doi: 10.3321/j.issn:1000-6869.1995.04.008
    [29]
    YANG Jian, CHEN Bao-chun, SHEN Xiu-jiang, et al. The optimized design of dog-bones for tensile of ultra-high performance concrete[J]. Engineering Mechanics, 2018, 35(10): 37-46, 55. (in Chinese). doi: 10.6052/j.issn.1000-4750.2017.06.0446
    [30]
    CHEN Bao-chun, LI Cong, HUANG Wei, et al. Review of ultra-high performance concrete shrinkage[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 13-28. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.01.002
    [31]
    LI Cong, CHEN Bao-chun, WEI Jian-gang. Shrinkage and mechanical properties of UHPC with coarse aggregate[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 11-20. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.05.003
    [32]
    JIN Ling-zhi, ZHOU Jia-liang, LI Yue-xia, et al. Experimental study on shear bearing capacity of RPC beams with high strength reinforcement[J]. Journal of Building Structures, 2015, 36(S2): 277-285. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2015S2041.htm
    [33]
    MA Xi-lun. Flexural, shear behavior and design method of prestressed UHPC box girders[D]. Fuzhou: Fuzhou University, 2019. (in Chinese).
    [34]
    XU Hai-bin, DENG Zong-cai, CHEN Chun-sheng, et al. Experimental study on shear strength of ultra-high performance fiber reinforced concrete beams[J]. China Civil Engineering Journal, 2014, 47(12): 91-97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201412015.htm

Catalog

    Article Metrics

    Article views (1586) PDF downloads(265) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return